摘要:
A family of compounds has been found to be useful for right-shifting hemoglobin towards a low oxygen affinity state. The compounds are capable of acting on hemoglobin in whole blood. In addition, the compounds can maintain the oxygen affinity in blood during storage and can restore the oxygen affinity of outdated blood.
摘要:
A family of compounds has been found to be useful for right-shifting hemoglobin towards a low oxygen affinity state. The compounds are capable of acting on hemoglobin in whole blood. In addition, the compounds can maintain the oxygen affinity in blood during storage and can restore the oxygen affinity of outdated blood.
摘要:
A family of compounds has been found to be useful for right-shifting hemoglobin towards a low oxygen affinity state. The compounds are capable of acting on hemoglobin in whole blood. In addition, the compounds can maintain the oxygen affinity in blood during storage and can restore the oxygen affinity of outdated blood.
摘要:
A family of substituted chiral allosteric effectors of hemoglobin is useful for delivering more oxygen to hypoxic and ischemic tissues by reducing the oxygen affinity of hemoglobin in whole blood.
摘要:
Compounds for the treatment of sickle-cell disease, and methods for their use are provided. The compounds have a dual mode of action. First, binding of the compounds to hemoglobin increases the oxygen affinity of both normal and sickle hemoglobin. Secondly, binding of these compounds to the N-terminal amino acid of sickle hemoglobin results in destabilization of potential contacts between sickle hemoglobin molecules, preventing polymerization and the formation of fibrous precipitates of the sickle hemoglobin. The compounds are also useful for inducing hypoxia, e.g. to augment cancer treatments.
摘要:
Chemical structures have been identified which allosterically modify pyrvate kinase and either inhibit or activate enzymatic activity. These compounds can be used as pharmaceuticals in the treatment of a wide variety of diseases and disorders where influencing metabolic processes is beneficial, such as the glycolytic pathway, all pathways which use ATP as an energy source, and all pathways which involve 2,3-diphosphoglycerate.