Abstract:
A braze furnace of the inert gas type cooperatively uses the waste heat from the cooling chamber to vaporize liquid inert gas, while using the coolness of the inert gas being vaporized to accelerate the cooling process itself. The walls of the cooling chamber provide a hollow plenum into which stored liquified inert gas is metered and vaporized. From the plenum, vaporized gas is routed wherever needed to purge oxygen from the system. In addition, liquid gas can be injected directly into the cooling chamber for even quicker, direct part cooling and the purge the cooling chamber.
Abstract:
A combination radiator and condenser apparatus has a pair of tank and header assemblies adapted to be connected in both a coolant system for liquid cooled engine and a refrigerant system of an automobile air conditioning system. The assemblies each include a tank with two compartments separated by an internal partition which extends the full height of the tank. Each tank includes a slotted header for receiving the ends of a plurality of unitary extruded fluid flow tubes extending between each extruded tank and each of the unitary extruded fluid flow tubes have first and second passages therein connected respectively to the coolant chamber and the high pressure refrigerant chamber of each tank. Each tank includes a unitary tank extrusion and separate header assembly connected thereto. The tank extrusion includes a pair of side walls with the partition therebetween. A first embodiment of the header assembly includes two separate headers extending between the respective side wall and partition within grooves thereof. A second embodiment includes a single header extending between the side walls with a slot in the center to receive locking tabs extending from the partition.
Abstract:
An improved method for assembly of a brazed condenser unit for use in an automobile air conditioning system is provided which significantly reduced the defective rate due to leaky internal joints within the condenser. A sufficiently viscous flux composition is applied to the internal features of the condenser during assembly. The flux composition is specifically applied to surfaces of the aluminum alloy header which is clad internally with the brazing alloy, so as to promote complete and consistent brazing of the internal tubes and components. The brazing flux composition of this invention consists of potassium fluoaluminate particles in a liquid carrier consisting of a polyhydric alcohol, e.g., propylene glycol, and minimal amounts of water. This flux composition has a sufficiently high viscosity so as to permit its easy, consistent deposition on the header surface without subsequent displacement during assembly and processing.
Abstract:
A convection braze furnace for brazing aluminum heat exchangers in an inert gas rich atmosphere includes entrance and exit vestibules forming atmosphere barriers of suspended stainless steel strips. The interior of the braze furnace is divided into multiple zones for progressively heating the heat exchangers to a brazing temperature and then cooling the heat exchangers in the final zone. An impeller circulates the heated inert gas atmosphere within each zone to accelerate heat transfer. A chain type conveyor supports the heat exchangers as they are moved through the braze furnace. An isolated return tube surrounds the lower return side of the conveyor chain as it passes through the braze furnace. The braze furnace housing is comprised of inner and outer shells having an inert gas pressurized cavity interstitial therebetween. The inner shell includes a plurality of expansion strips having generally ellipsoidal corner expansion joints.
Abstract:
A convection braze furnace for brazing aluminum heat exchangers in an inert gas rich atmosphere includes entrance and exit vestibules forming atmosphere barriers of suspended stainless steel strips. The interior of the braze furnace is divided into multiple zones for progressively heating the heat exchangers to a brazing temperature and then cooling the heat exchangers in the final zone. An impeller circulates the heated intent gas atmosphere within each zone to accelerate heat transfer. A chain type conveyor supports the heat exchangers as they are moved through the braze furnace. An isolated return tube surrounds the lower return side of the conveyor chain as it passes through the braze furnace. The braze furnace housing is comprised of inner and outer shells having an inert gas pressurized cavity interstitial therebetween. The inner shell includes a plurality of expansion strips having generally ellipsoidal corner expansion joints.
Abstract:
A method of painting an object and subsequently drying such painted object by first heating a solvent-containing paint to a temperature between 80.degree. to 115.degree. F. and heating the object to be painted to a temperature between 110.degree. to 160.degree. F. such that the drying time required for the paint after painting is substantially reduced.
Abstract:
A heat exchanger assembly has a pair of spaced extruded tanks and a tube and header subassembly including a pair of header plates on opposite ends of a plurality of spaced parallel tubes. The extruded tanks include stop surfaces thereon for locating the subassembly within the extruded tanks and the extruded tanks further include a pair of seal ribs and a pair of deformable side flanges defining a pocket for receiving flux material to secure the subassembly to the extruded tanks without exposing the flux material to the interior of the extruded tanks.
Abstract:
A convection braze furnace for brazing aluminum heat exchangers in an inert gas rich atmosphere includes entrance and exit vestibules forming atmosphere barriers of suspended stainless steel strips. The interior of the braze furnace is divided into multiple zones for progressively heating the heat exchangers to a brazing temperature and then cooling the heat exchangers in the final zone. An impeller circulates the heated inert gas atmosphere within each zone to accelerate heat transfer. A chain type conveyor supports the heat exchangers as they are moved through the braze furnace. An isolated return tube surrounds the lower return side of the conveyor chain as it passes through the braze furnace. The braze furnace housing is comprised of inner and outer shells having an inert gas pressurized cavity interstitial therebetween. The inner shell includes a plurality of expansion strips having generally ellipsoidal corner expansion joints.
Abstract:
A convection braze furnace for brazing aluminum heat exchangers in an inert gas rich atmosphere includes entrance and exit vestibules forming atmosphere barriers of suspended stainless steel strips. The interior of the braze furnace is divided into multiple zones for progressively heating the heat exchangers to a brazing temperature and then cooling the heat exchangers in the final zone. An impeller circulates the heated inert gas atmosphere within each zone to accelerate heat transfer. A chain type conveyor supports the heat exchangers as they are moved through the braze furnace. An isolated return tube surrounds the lower return side of the conveyor chain as it passes through the braze furnace. The braze furnace housing is comprised of inner and outer shells having an inert gas pressurized cavity interstitial therebetween. The inner shell includes a plurality of expansion strips having generally ellipsoidal corner expansion joints.
Abstract:
A high capacity condenser for automotive application is built up from two layers or modules so as to make maximum use of standard components. The tanks of header tank and tube type condensers are extruded with interfitting clearance notches and stand-off flanges along the length of the tanks that maintain the two modules spaced apart and aligned. A specially designed cross-over pipe interconnects the two modules in a fluid sense and also cooperates in mechanically joining the two.