Abstract:
A housing for a portable computing device. An upper surface of the housing facilitates access to at least one interface component. A lower surface of the housing defines a cavity to receive a battery pack. A battery pack, adapted to fit within the cavity, defines at least a portion of a first ridge for receiving an operator's finger, the first ridge having a generally curved configuration enabling said housing to be comfortably held in an operator's hand when the operator's hand is in its naturally relaxed position.
Abstract:
There is disclosed an apparatus for illuminating a sensing region having an object therein, comprising a reflector that is elongated in a first plane, the reflector having a width dimension that is less than a width dimension of a sensing region to be illuminated, and further having a first curved profile in the first plane about a center of curvature. In a preferred embodiment the reflector is disposed between the center of curvature and the sensing region. In a second plane which is orthogonal to the first plane and includes the center of curvature, a reflecting surface of the reflector has a second curved profile. A plurality of substantially Lambertian light sources each face the reflector for directing light thereto generally in a direction of the center of curvature for reflection toward the sensing region. The second profile preferably comprises a portion of an ellipse and a light source is disposed substantially at a primary focus thereof. The second profile preferably has a gap for transmitting retroreflected light generated within the sensing region therethrough. An upper portion of the second profile comprises a portion of a first surface of revolution selected from the group of ellipse and parabola, and the lower portion of the second profile can comprise a portion of a second surface of revolution selected from the group of ellipse and parabola, a light source being disposed at a focus of each of the first surface of revolution and the second surface of revolution. The assembly is combined in a scanner for reading optical patterns.
Abstract:
A housing for a portable computing device. An upper surface of the housing facilitates access to at least one interface component. A lower surface of the housing defines a cavity to receive a battery pack. A battery pack, adapted to fit within the cavity, defines at least a portion of a first ridge for receiving an operator's finger, the first ridge having a generally curved configuration enabling said housing to be comfortably held in an operator's hand when the operator's hand is in its naturally relaxed position.
Abstract:
A refrigeration circuit is provided with a quench line connecting the liquid line and the suction line and containing a QEV. The QEV is controlled responsive to the superheat of the refrigerant supplied to the compressor. By injecting liquid refrigerant downstream of the suction modulation valve and the sensor for the TXV, the system can be operated at low capacity without overheating the compressor oil.
Abstract:
A point of sale transaction terminal having a flat wall surface containing a signature capture pad and further includes electrical lead lines that surround the capture pad and carry signature related data to an x-y register or the like. A lower cover panel is placed upon a wall that surrounds the capture pad so that the panel physically covers the lead lines. The lower cover panel is secured to the wall surface by a relatively strong bonding material which provides a tight seal between the panel and the wall surface which prevents water and dirt from passing beneath the panel. An upper cover panel having a protective window that is mounted within a frame is placed in registration over the lower cover panel so that the window is centered over the capture pad. The upper cover panel is releasably secured to the lower cover panel by an adhesive so that the upper panel can be easily removed from the assembly and replaced in the event the protective window is worn or damaged.
Abstract:
An apparatus for adjusting the position of a line of light in barcode space that includes a support frame having a rear housing containing a solid state imager and a pair of support arms extending forwardly from the front of the housing. An imaging lens is mounted between the arms for focusing an image of a target in barcode space upon the solid state imager along the optical axis of the imaging lens. Illuminating LEDs are mounted on either side of the imaging lens for illuminating the target. The illumination is passed through a pair of cylindrical lenses that are adjustably mounted upon the distal ends of the arm so that the light can be selectively positioned in barcode space.
Abstract:
A body portion of an optical reader has an elastomeric skirt surrounding the lateral edges thereof. The laterally spaced front edges of the skirt, which are on either side of a window through which the light is emitted and received along an optical axis, are angled rearwardly from a plane normal to the axis. The front edges extend downwardly and forwardly from a front edge of the bottom wall of a body, and also extend forwardly from a front edge of the top wall of the body. These features allow the lower ends of the front edges of the skirt to be placed on a surface near the target to act as a fulcrum in rotating the handle of the scanner to selectively place the reader in close proximity to the target, while at the same time allowing the operator to view the target. An elastomeric collar is applied to the lower end of the handle such that when the scanning device is placed at rest in an unused condition, no matter what the rotational position with respect to the axis of the handle, the device will be supported at one elastomeric covered position on each of the handle and the skirt. Other features of the scanning device provide for a stable parking of the scanner when not in use and a substantial recessing of the front window to thereby protect it from contact with objects that may tend to scratch or damage the window.
Abstract:
These and other objects of the present invention are attained by apparatus for adjusting the position of a line of light in barcode space that includes a support frame having a rear housing containing a solid state imager and a pair of support arms extending forwardly from the front of the housing. An imaging lens is mounted between the arms for focusing an image of a target in barcode space upon the solid state imager along the optical axis of the imaging lens. Illuminating LEDs are mounted on either side of the imaging lens for illuminating the target. The illumination is passed through a pair of cylindrical lenses that are adjustably mounted upon the distal ends of the arm so that the light can be selectively positioned in barcode space.
Abstract:
These and other objects of the present invention are attained by apparatus for adjusting the position of a line of light in barcode space that includes a support frame having a rear housing containing a solid state imager and a pair of support arms extending forwardly from the front of the housing. An imaging lens is mounted between the arms for focusing an image of a target in barcode space upon the solid state imager along the optical axis of the imaging lens. Illuminating LEDs are mounted on either side of the imaging lens for illuminating the target. The illumination is passed through a pair of cylindrical lenses that are adjustably mounted upon the distal ends of the arm so that the light can be selectively positioned in barcode space.