摘要:
Disclosed herein is a cathode active material including a lithium manganese oxide, in which the lithium manganese oxide has a spinel structure with a predetermined constitutional composition represented by Formula 1 described in the detailed description, wherein a conductive material is applied to the surface of lithium manganese oxide particles, so as to exhibit charge-discharge properties in the range of 2.5 to 3.5V as well as in the 4V region.
摘要:
A high capacity lithium secondary battery includes a lithium manganese oxide having a layered structure exhibiting a great irreversible capacity in the event of overcharging at a high voltage and a spinel-based lithium manganese oxide. Because it is activated at a high voltage of 4.45 V or higher based on a positive electrode potential, additional lithium for utilizing a 3V range of the spinel-based lithium manganese oxide can be provided and an even profile in the entire SOC area can be obtained. Because the lithium secondary battery includes the mixed positive electrode active material including the spinel-based lithium manganese oxide and the lithium manganese oxide having a layered structure, and is charged at a high voltage, its stability can be improved. Also, the high capacity battery having a large available SOC area and improved stability without causing an output shortage due to a rapid voltage drop in the SOC area can be implemented.
摘要:
The present invention relates to electrodes for a lithium secondary battery with a high energy density and a secondary battery with a high energy density using the same. A negative electrode includes a material which can be alloyed with lithium alloy. A positive electrode is made of a transition metal oxide which can reversibly intercalate or deintercalate lithium. Here, the entire reversible lithium storage capacity of the positive electrode is greater than the capacity of lithium dischargeable from the positive electrode.
摘要:
Provided are a mixed cathode active material including lithium manganese oxide expressed as Chemical Formula 1 and a stoichiometric spinel structure Li4Mn5O12 having a plateau voltage profile in a range of 2.5 V to 3.3 V, and a lithium secondary battery including the mixed cathode active material. The mixed cathode material and the lithium secondary battery including the same may have improved safety and simultaneously, power may be maintained more than a required value by allowing Li4Mn5O12 to complement low power in a low state of charge (SOC) range. Therefore, a mixed cathode active material able to widen an available SOC range and a lithium secondary battery including the mixed cathode active material may be provided and properly used in a plug-in hybrid electric vehicle (PHEV) or electric vehicle (EV).
摘要翻译:提供了包含表示为化学式1的锂锰氧化物和具有2.5V至3.3V范围内的平台电压分布的化学计量尖晶石结构Li 4 Mn 5 O 12的混合阴极活性材料和包括该混合阴极活性材料的锂二次电池。 混合阴极材料和包含该混合阴极材料的锂二次电池可以提高安全性,并且同时,通过允许Li 4 Mn 5 O 12在低充电(SOC)范围内补充低功率,可以将功率维持为超过所需值。 因此,可以提供能够扩大可用SOC范围的混合阴极活性物质和包括混合阴极活性物质的锂二次电池,并适当地用于插电式混合电动车辆(PHEV)或电动车辆(EV)。
摘要:
A high capacity lithium secondary battery includes a lithium manganese oxide having a layered structure exhibiting a great irreversible capacity in the event of overcharging at a high voltage and a spinel-based lithium manganese oxide. Because it is activated at a high voltage of 4.45 V or higher based on a positive electrode potential, additional lithium for utilizing a 3V range of the spinel-based lithium manganese oxide can be provided and an even profile in the entire SOC area can be obtained. Because the lithium secondary battery includes the mixed positive electrode active material including the spinel-based lithium manganese oxide and the lithium manganese oxide having a layered structure, and is charged at a high voltage, its stability can be improved. Also, the high capacity battery having a large available SOC area and improved stability without causing an output shortage due to a rapid voltage drop in the SOC area can be implemented.
摘要:
A thin and wide area lithium ion secondary battery is disclosed. The lithium ion secondary battery has a container having a flange extended outwardly from a region where a terminal is located in the container, and constituted by a can and a cap having preferred shapes, respectively, wherein the flange of the cap is welded at an outer surface of the flange to an outer surface of the flange of the cap by means of micro-arc welding. According to the present invention, a cooling jig can be easily installed to the container, allowing efficient removal of problems caused by heat upon welding, resulting in allowing application of micro-arc welding thereto without generating damage of the interior or the battery caused by heat. Accordingly, more economical and stable butt welding can be performed, thereby remarkably reducing defect occurrence rates causing leakage problem of the resulting battery, and manufacturing costs of the lithium secondary battery.
摘要:
Provided are a mixed cathode active material including layered structure lithium manganese oxide expressed as Chemical Formula 1 and a second cathode active material having a plateau voltage profile in a range of 2.5 V to 3.3 V, and a lithium secondary battery including the mixed cathode active material. The mixed cathode active material and the lithium secondary battery including the same may have improved safety and simultaneously, may be used in an operating device requiring the foregoing battery by widening a state of charge (SOC) range able to maintain power more than a required value by allowing the second cathode active material to complement low power in a low SOC range.
摘要:
Provided are a positive electrode active material for improving an output and a lithium secondary battery including the same. Particularly, graphite and conductive carbon which have shapes and sizes different from each other, may be simultaneously coated on a mixed positive electrode material of a 3-component system lithium-containing metal oxide having a layered structure and expressed as following Chemical Formula 1 and LiFePO4 having an olivine structure as an conductive material to improve high resistance occurrence and conductivity reduction phenomenon of a 3-component system lithium metal oxide due to a difference between particle sizes and surface areas of the 3-component system lithium-containing metal oxide and LiFePO4 olivine. Li1+aNixCoyMn1-x-yO2, 0≦a
摘要:
Disclosed herein is a cathode active material including a lithium manganese oxide, in which the lithium manganese oxide has a spinel structure with a predetermined constitutional composition represented by Formula 1 described in the detailed description, wherein a conductive material is applied to the surface of lithium manganese oxide particles, so as to exhibit charge-discharge properties in the range of 2.5 to 3.5V as well as in the 4V region.
摘要:
Provided are a mixed cathode active material including layered structure lithium manganese oxide expressed as Chemical Formula 1 and a second cathode active material having a plateau voltage profile in a range of 2.5 V to 3.3 V, and a lithium secondary battery including the mixed cathode active material. The mixed cathode active material and the lithium secondary battery including the same may have improved safety and simultaneously, may be used in an operating device requiring the foregoing battery by widening a state of charge (SOC) range able to maintain power more than a required value by allowing the second cathode active material to complement low power in a low SOC range.