摘要:
A cryogenic container includes an inner vessel for containing a cryogenic fluid, and an outer vessel for insulating the cryogenic fluid from the environment. The inner vessel includes a superconductive layer formed of a material having superconducting properties at the temperature of the cryogenic fluid. The superconductive layer forms a magnetic field around the cryogenic container, that repels electromagnetic energy, including thermal energy from the environment, keeping the cryogenic fluid at low temperatures. The cryogenic container has a portability and a volume that permits its' use in applications from handheld electronics to vehicles such as alternative fueled vehicles (AFVs). A SMES storage system includes the cryogenic container, and a SMES magnet suspended within the cryogenic fluid. The SMES storage system can also include a recharger and a cryocooler configured to recharge the cryogenic container with the cryogenic fluid.
摘要:
A system for producing, dispensing, using and monitoring a hydrogen enriched fuel includes a producing system configured to produce the hydrogen enriched fuel, a vehicle having an engine configured to use the hydrogen enriched fuel, and a dispensing system configured to store and dispense the hydrogen enriched fuel into the vehicle. The system also includes a fuel delivery system on the vehicle configured to deliver the hydrogen enriched fuel to the engine, and a control system configured to control the producing system and to monitor the use of the hydrogen enriched fuel by the vehicle. A method includes the steps of producing hydrogen gas and a hydrocarbon fuel, blending the hydrogen gas and the hydrocarbon fuel into the hydrogen enriched fuel, using the hydrogen enriched fuel in the engine, and tracking emissions during the producing step and during the using step.
摘要:
A method for producing a supercritical cryogenic fuel (SCCF) includes dissolving a hydrogen gas in fuel value proportions into a supercritical hydrocarbon fluid. The method is performed by placing a hydrogen gas and a hydrocarbon fluid at a pressure greater than the critical pressure of the hydrocarbon, placing the hydrogen gas and the hydrocarbon fluid at a temperature below or approximately equal to the critical temperature of the hydrocarbon forming the supercritical hydrocarbon fluid, and then mixing to dissolve the hydrogen gas into the supercritical hydrocarbon fluid. A system for performing the method includes a vortex mixer configured to turbulently mix the hydrogen gas and the supercritical hydrocarbon fluid. The supercritical cryogenic fuel (SCCF) produced by the method and the system includes the supercritical hydrocarbon fluid with a selected mole fraction of the hydrogen gas dissolved therein.
摘要:
A cryogenic container includes an inner vessel for containing a cryogenic fluid, and an outer vessel for insulating the cryogenic fluid from the environment. The inner vessel includes a superconductive layer formed of a material having superconducting properties at the temperature of the cryogenic fluid. The superconductive layer forms a magnetic field around the cryogenic container, that repels electromagnetic energy, including thermal energy from the environment, keeping the cryogenic fluid at low temperatures. The cryogenic container has a portability and a volume that permits its' use in applications from handheld electronics to vehicles such as alternative fueled vehicles (AFVs). A SMES storage system includes the cryogenic container, and a SMES magnet suspended within the cryogenic fluid. The SMES storage system can also include a recharger and a cryocooler configured to recharge the cryogenic container with the cryogenic fluid.
摘要:
A gas blending and compressing system includes a blender having a blending chamber configured to blend two or more separate gases into a blended gas, a compressor configured to compress the blended gas to a selected pressure, and a control system configured to sense operational parameters of the blender and the compressor, to sense one or more properties of the blended gas and to control the operation of the blender and the compressor to maintain the quality of the blended gas. A method for blending and compressing two or more gases includes the steps of: blending the separate gases into a blended gas using the blender; compressing the blended gas using the compressor; and matching a constant flow through the compressor to a selected minimum flow dependent on nominal operating parameters of the compressor. Alternate embodiment systems and methods blend separate gases at high pressure without using a compressor. Various principles are applied at high pressure including choked flow and partial pressure blending.