Abstract:
The present invention provides a clock and data recovery circuit, including an n-phase clock, a sampling and edge detection unit, an edge determination unit, a clock picking unit and a data picking unit. The sampling and edge detection unit performs spaced sampling on the input serial data using the n-phase clock, and performs edge detection and resampling on the sampled data. The edge determination unit filters the resampled data by the counting units, and obtains the positions of the edges of the serial data according to the counting result of the counting units. The clock picking unit selects a clock from the n clocks that is the farthest away from the edges as the recovered clock. The data picking unit obtains the recovered data according to the recovered clock. The present invention also provides a parallel output circuit.
Abstract:
A signal transmission method for a USB interface and an apparatus thereof are provided. The method includes: receiving a first USB signal sent from a sending terminal, processing the first USB signal into a USB-like signal, and transmitting the USB-like signal via a networking cable; receiving the USB-like signal, processing the USB-like signal into a second USB signal, and sending the second USB signal to a receiving terminal. According to the embodiments of the present invention, the first USB signal is processed into a USB-like signal which is similar to the USB signal, the USB-like signal is transmitted via a networking cable, and the USB-like signal is processed into a second USB signal. The transmission process does not require converting the USB signal into a networking-cable signal which is to be transmitted via a networking cable, thereby avoiding conversion between protocols, and simplifying the entire transmission process.
Abstract:
A signal transmission method for a USB interface and an apparatus thereof are provided. The method includes: receiving a first USB signal sent from a sending terminal, processing the first USB signal into a USB-like signal, and transmitting the USB-like signal via a networking cable; receiving the USB-like signal, processing the USB-like signal into a second USB signal, and sending the second USB signal to a receiving terminal. According to the embodiments of the present invention, the first USB signal is processed into a USB-like signal which is similar to the USB signal, the USB-like signal is transmitted via a networking cable, and the USB-like signal is processed into a second USB signal. The transmission process does not require converting the USB signal into a networking-cable signal which is to be transmitted via a networking cable, thereby avoiding conversion between protocols, and simplifying the entire transmission process.
Abstract:
The present invention provides a clock and data recovery circuit, including an n-phase clock, a sampling and edge detection unit, an edge determination unit, a clock picking unit and a data picking unit. The sampling and edge detection unit performs spaced sampling on the input serial data using the n-phase clock, and performs edge detection and resampling on the sampled data. The edge determination unit filters the resampled data by the counting units, and obtains the positions of the edges of the serial data according to the counting result of the counting units. The clock picking unit selects a clock from the n clocks that is the farthest away from the edges as the recovered clock. The data picking unit obtains the recovered data according to the recovered clock. The present invention also provides a parallel output circuit.