Abstract:
The present invention relates, in general, to a Radio Frequency Identification (RFID) system for reading or recording RFID tag information using radio frequencies and, more particularly, to an intelligent RFID system for low-powered reader-tag communication, which includes an RF shower system (370) that radiates a high power electromagnetic wave in a high frequency band to activate the passive tags having no batteries and that has predetermined communication means for reading information from a plurality of passive tags existing in a radiation zone having a predetermined size, storing the read tag information, and providing the stored tag information when a request is received from an RFID reader (310).
Abstract:
A patch antenna for receiving high frequency wireless signal and a rectenna using the same, more particularly, an impedance-matched patch antenna adopting a slot capacitive coupling structure and a rectenna capable of generating electrical energy from the wireless signals having different frequency band. A rectenna for receiving an A.C. wireless signal carrying electrical energy and converting the wireless signal into a D.C. electrical energy, is comprised of: a patch antenna for receiving the wireless signal comprising an dielectric substrate, a patch that is formed at the upper area of the surface of the dielectric substrate and providing the first frequency response characteristics, a ground plane formed on the other surface of the dielectric substrate, and an impedance matching means providing the second frequency response characteristics; and a rectifying unit that converts the wireless signal, received via the patch antenna, into a D.C. electrical energy by rectifying the wireless signal.
Abstract:
A patch antenna for receiving high frequency wireless signal and a rectenna using the same, more particularly, an impedance-matched patch antenna adopting a slot capacitive coupling structure and a rectenna capable of generating electrical energy from the wireless signals having different frequency band. A rectenna for receiving an A.C. wireless signal carrying electrical energy and converting the wireless signal into a D.C. electrical energy, is comprised of: a patch antenna for receiving the wireless signal comprising an dielectric substrate, a patch that is formed at the upper area of the surface of the dielectric substrate and providing the first frequency response characteristics, a ground plane formed on the other surface of the dielectric substrate, and an impedance matching means providing the second frequency response characteristics; and a rectifying unit that converts the wireless signal, received via the patch antenna, into a D.C. electrical energy by rectifying the wireless signal.
Abstract:
An electricity charging module using a hysteresis switch includes a storage capacitor that preliminarily stores electrical energy supplied from an external power source, a charging unit for preventing over-charging or over-discharging through monitoring of the charging state of the rechargeable battery, and a hysteresis switch that has a larger turn-on voltage level than the turn-off voltage level, and located between the storage capacitor and the charging unit, thereby electrically connecting or disconnecting the storage capacitor with the charging unit. The hysteresis switch includes a first voltage dividing resistor pair that divides the voltage of an external power source by the resistance ratio of the first voltage dividing resistor pair, a second voltage dividing resistor pair whose one end is connected to a positive electrode terminal of the external power source, a first switching device whose control terminal is connected to the junction of the voltage dividing resistors of the second voltage dividing resistor pair, a second switching device whose control terminal is connected to the junction of the voltage dividing resistors of the first voltage dividing resistor pair, and a resistor that is connected to the junction between the first electrode terminal of the second switching device and the junction of the voltage dividing resistors of the first voltage dividing resistor pair.
Abstract:
An electricity charging module using a hysteresis switch includes a storage capacitor that preliminarily stores electrical energy supplied from an external power source, a charging unit for preventing over-charging or over-discharging through monitoring of the charging state of the rechargeable battery, and a hysteresis switch that has a larger turn-on voltage level than the turn-off voltage level, and located between the storage capacitor and the charging unit, thereby electrically connecting or disconnecting the storage capacitor with the charging unit. The hysteresis switch includes a first voltage dividing resistor pair that divides the voltage of an external power source by the resistance ratio of the first voltage dividing resistor pair, a second voltage dividing resistor pair whose one end is connected to a positive electrode terminal of the external power source, a first switching device whose control terminal is connected to the junction of the voltage dividing resistors of the second voltage dividing resistor pair, a second switching device whose control terminal is connected to the junction of the voltage dividing resistors of the first voltage dividing resistor pair, and a resistor that is connected to the junction between the first electrode terminal of the second switching device and the junction of the voltage dividing resistors of the first voltage dividing resistor pair.