Abstract:
A near-field communication (NFC) card reader may include a monitor configured to measure an amplitude of a magnetic field induced by an antenna; a gain controller configured to determine an amplification gain based on the measured amplitude of the magnetic field and output a gain control signal; a signal restoration unit configured to receive a carrier signal and a data signal that overlaps with the carrier signal via the antenna, and restore the data signal from the received signals; and a variable-gain amplifier configured to amplify the data signal restored by the signal restoration unit according to the gain control signal.
Abstract:
A method of operating a contactless integrated circuit (IC) card reader includes calculating a first transition time of at least one first magnetic pulse during a first transition interval and calculating a second transition time of a second magnetic pulse during a second transition interval. The first transition time is calculated in a calibration phase, and the second transition time is calculated in a detection phase. A contactless IC card is determined to be within a communication rage of the reader based on a comparison of the first and second transition times.
Abstract:
A matching circuit of a near field communication (NFC) device includes a resonance unit connected between a first terminal and a second terminal of an antenna. The antenna is responsive to an electromagnetic wave. The resonance unit includes a first capacitor connected between the first terminal and the second terminal of the antenna. A matching unit is configured to perform impedance matching between the antenna and an NFC chip. The matching unit is connected between the first terminal and the second terminal of the antenna.
Abstract:
An electricity charging module using a hysteresis switch includes a storage capacitor that preliminarily stores electrical energy supplied from an external power source, a charging unit for preventing over-charging or over-discharging through monitoring of the charging state of the rechargeable battery, and a hysteresis switch that has a larger turn-on voltage level than the turn-off voltage level, and located between the storage capacitor and the charging unit, thereby electrically connecting or disconnecting the storage capacitor with the charging unit. The hysteresis switch includes a first voltage dividing resistor pair that divides the voltage of an external power source by the resistance ratio of the first voltage dividing resistor pair, a second voltage dividing resistor pair whose one end is connected to a positive electrode terminal of the external power source, a first switching device whose control terminal is connected to the junction of the voltage dividing resistors of the second voltage dividing resistor pair, a second switching device whose control terminal is connected to the junction of the voltage dividing resistors of the first voltage dividing resistor pair, and a resistor that is connected to the junction between the first electrode terminal of the second switching device and the junction of the voltage dividing resistors of the first voltage dividing resistor pair.
Abstract:
A near-field communication (NFC) card reader may include a monitor configured to measure an amplitude of a magnetic field induced by an antenna; a gain controller configured to determine an amplification gain based on the measured amplitude of the magnetic field and output a gain control signal; a signal restoration unit configured to receive a carrier signal and a data signal that overlaps with the carrier signal via the antenna, and restore the data signal from the received signals; and a variable-gain amplifier configured to amplify the data signal restored by the signal restoration unit according to the gain control signal.
Abstract:
A patch antenna for receiving high frequency wireless signal and a rectenna using the same, more particularly, an impedance-matched patch antenna adopting a slot capacitive coupling structure and a rectenna capable of generating electrical energy from the wireless signals having different frequency band. A rectenna for receiving an A.C. wireless signal carrying electrical energy and converting the wireless signal into a D.C. electrical energy, is comprised of: a patch antenna for receiving the wireless signal comprising an dielectric substrate, a patch that is formed at the upper area of the surface of the dielectric substrate and providing the first frequency response characteristics, a ground plane formed on the other surface of the dielectric substrate, and an impedance matching means providing the second frequency response characteristics; and a rectifying unit that converts the wireless signal, received via the patch antenna, into a D.C. electrical energy by rectifying the wireless signal.
Abstract:
An electricity charging module using a hysteresis switch includes a storage capacitor that preliminarily stores electrical energy supplied from an external power source, a charging unit for preventing over-charging or over-discharging through monitoring of the charging state of the rechargeable battery, and a hysteresis switch that has a larger turn-on voltage level than the turn-off voltage level, and located between the storage capacitor and the charging unit, thereby electrically connecting or disconnecting the storage capacitor with the charging unit. The hysteresis switch includes a first voltage dividing resistor pair that divides the voltage of an external power source by the resistance ratio of the first voltage dividing resistor pair, a second voltage dividing resistor pair whose one end is connected to a positive electrode terminal of the external power source, a first switching device whose control terminal is connected to the junction of the voltage dividing resistors of the second voltage dividing resistor pair, a second switching device whose control terminal is connected to the junction of the voltage dividing resistors of the first voltage dividing resistor pair, and a resistor that is connected to the junction between the first electrode terminal of the second switching device and the junction of the voltage dividing resistors of the first voltage dividing resistor pair.
Abstract:
A method of operating a contactless integrated circuit (IC) card reader includes calculating a first transition time of at least one first magnetic pulse during a first transition interval and calculating a second transition time of a second magnetic pulse during a second transition interval. The first transition time is calculated in a calibration phase, and the second transition time is calculated in a detection phase. A contactless IC card is determined to be within a communication rage of the reader based on a comparison of the first and second transition times.
Abstract:
A patch antenna for receiving high frequency wireless signal and a rectenna using the same, more particularly, an impedance-matched patch antenna adopting a slot capacitive coupling structure and a rectenna capable of generating electrical energy from the wireless signals having different frequency band. A rectenna for receiving an A.C. wireless signal carrying electrical energy and converting the wireless signal into a D.C. electrical energy, is comprised of: a patch antenna for receiving the wireless signal comprising an dielectric substrate, a patch that is formed at the upper area of the surface of the dielectric substrate and providing the first frequency response characteristics, a ground plane formed on the other surface of the dielectric substrate, and an impedance matching means providing the second frequency response characteristics; and a rectifying unit that converts the wireless signal, received via the patch antenna, into a D.C. electrical energy by rectifying the wireless signal.