Abstract:
The invention relates to a method of forming a phosphor film and a method of manufacturing an LED package incorporating the same. The method of forming a phosphor film includes mixing phosphor and light-transmitting beads in an aqueous solvent such that the nano-sized light-transmitting beads having a first charge are adsorbed onto surfaces of phosphor particles having a second charge. The method also includes coating a phosphor mixture obtained from the mixing step on an area where the phosphor film is to be formed, and drying the coated phosphor mixture to form the phosphor film. The invention further provides a method of manufacturing an LED package incorporating the method of forming the phosphor film.
Abstract:
In a light emitting diode package, a package substrate includes a mounting area, an electrode and a light emitting diode chip disposed on the mounting area. A phosphor film encapsulates the light emitting diode chip in an upward convex configuration. A resin encapsulant encapsulates the phosphor film in an upward convex configuration. The light emitting diode package prevents light loss which arises from increased light scattering due to dense phosphors, thereby achieving excellent light extraction efficiency. Also, a phosphor film is formed by dispensing, thereby leading to no breaking of an upper wire even in a face-up chip.
Abstract:
A light emitting diode package. A package substrate has first and second electrode structures and a light emitting diode is mounted on the package substrate and electrically connected to the first and second electrode structures. A resin encapsulant is made of a transparent resin to seal the light emitting diode. A plurality of transparent spherical particles having a refractive index higher than the transparent resin are dispersed in the resin encapsulant.
Abstract:
A system and method for a mobile web service is provided. A system for a mobile web service includes: a generator parsing a web page to generate a text formatted first hierarchical structure tree; a converter encoding the generated first hierarchical structure tree to convert the encoded first hierarchical structure tree into a binary formatted second hierarchical structure tree; and a transmitter transmitting the converted second hierarchical structure tree to a mobile terminal.
Abstract:
Disclosed herein is a method of forming a guanidine group on carbon nanotubes to improve the dispersibility of carbon nanotubes, a method of attaching carbon nanotubes having guanidine groups to a substrate, and carbon nanotubes and a substrate manufactured by the above methods. The method of forming the guanidine group on the carbon nanotubes includes forming a carboxyl group on the carbon nanotubes, and forming the guanidine group on the carboxyl group of the carbon nanotubes. In addition, the method of attaching the carbon nanotubes having guanidine groups to the substrate includes coating a substrate with a polymer having crown ether attached thereto, drying the polymer layer having crown ether attached thereto formed on the substrate to be semi-dried, and coating the semi-dried polymer layer with a solution including carbon nanotubes having guanidine groups dispersed therein. The carbon nanotubes having guanidine groups, which are manufactured by the method of the current invention, are hydrogen bonded with the solvent molecule capable of reacting with the guanidine group to form the hydrogen bond, and thus, are uniformly dispersed in the solvent. Further, by using the properties of the guanidine group capable of being selectively combined with crown ether, the carbon nanotubes having guanidine groups are aligned perpendicularly to the substrate at regular intervals thereon.
Abstract:
A method of manufacturing a light emitting diode package. A cup-shaped package structure with a recess formed therein and an electrode structure formed on a bottom of the recess is prepared. A light emitting diode chip is mounted on a bottom of the recess with a terminal of the chip electrically connected to the electrode structure. A liquid-state transparent resin is injected in the recess and before the liquid-state transparent resin is completely cured, a stamp with a micro rough pattern engraved thereon is applied on an upper surface of the resin. The liquid-state transparent resin is cured with the stamp applied thereon to form a resin encapsulant and the stamp is removed from the resin encapsulant.
Abstract:
The invention relates to a method of forming a phosphor film and a method of manufacturing an LED package incorporating the same. The method of forming a phosphor film includes mixing phosphor and light-transmitting beads in an aqueous solvent such that the nano-sized light-transmitting beads having a first charge are adsorbed onto surfaces of phosphor particles having a second charge. The method also includes coating a phosphor mixture obtained from the mixing step on an area where the phosphor film is to be formed, and drying the coated phosphor mixture to form the phosphor film. The invention further provides a method of manufacturing an LED package incorporating the method of forming the phosphor film.
Abstract:
Disclosed herein is a method of forming a guanidine group on carbon nanotubes to improve the dispersibility of carbon nanotubes, a method of attaching carbon nanotubes having guanidine groups to a substrate, and carbon nanotubes and a substrate manufactured by the above methods. The method of forming the guanidine group on the carbon nanotubes includes forming a carboxyl group on the carbon nanotubes, and forming the guanidine group on the carboxyl group of the carbon nanotubes. In addition, the method of attaching the carbon nanotubes having guanidine groups to the substrate includes coating a substrate with a polymer having crown ether attached thereto, drying the polymer layer having crown ether attached thereto formed on the substrate to be semi-dried, and coating the semi-dried polymer layer with a solution including carbon nanotubes having guanidine groups dispersed therein. The carbon nanotubes having guanidine groups, which are manufactured by the method of the current invention, are hydrogen bonded with the solvent molecule capable of reacting with the guanidine group to form the hydrogen bond, and thus, are uniformly dispersed in the solvent. Further, by using the properties of the guanidine group capable of being selectively combined with crown ether, the carbon nanotubes having guanidine groups are aligned perpendicularly to the substrate at regular intervals thereon.
Abstract:
The invention relates to a method of forming a phosphor film and a method of manufacturing an LED package incorporating the same. The method of forming a phosphor film includes mixing phosphor and light-transmitting beads in an aqueous solvent such that the nano-sized light-transmitting beads having a first charge are adsorbed onto surfaces of phosphor particles having a second charge. The method also includes coating a phosphor mixture obtained from the mixing step on an area where the phosphor film is to be formed, and drying the coated phosphor mixture to form the phosphor film. The invention further provides a method of manufacturing an LED package incorporating the method of forming the phosphor film.
Abstract:
A method of manufacturing a light emitting diode package. A cup-shaped package structure with a recess formed therein and an electrode structure formed on a bottom of the recess is prepared. A light emitting diode chip is mounted on a bottom of the recess with a terminal of the chip electrically connected to the electrode structure. A liquid-state transparent resin is injected in the recess and before the liquid-state transparent resin is completely cured, a stamp with a micro rough pattern engraved thereon is applied on an upper surface of the resin. The liquid-state transparent resin is cured with the stamp applied thereon to form a resin encapsulant and the stamp is removed from the resin encapsulant.