Abstract:
A method of manufacturing a semiconductor package including coating a flux on a connection pad provided on a first surface of a substrate, the flux including carbon nanotubes (CNTs), placing a solder ball on the connection pad coated with the flux, forming a solder layer attached to the connection pad from the solder ball through a reflow process, and mounting a semiconductor chip on the substrate such that the solder layer faces a connection pad in the semiconductor chip may be provided.
Abstract:
A first aspect of the invention relates to a carbon-nanotube-based composite coating, comprising a layer of carbon nanotubes (CNTs) that comprise metal oxide claddings sheathing them. Another aspect of the invention relates to a method for producing such CNT-based composite coatings using chemical vapour deposition (CVD).
Abstract:
A process of producing a yarn, ribbon or sheet that includes nanofibers in which the process includes forming a yarn, ribbon or sheet comprising nanofibers, and applying an enhancing agent comprising a polymer to the yarn, ribbon or sheet.
Abstract:
A method for patterning a piece of carbon nanomaterial. The method comprises generating a first light pulse sequence with first light pulse sequence property values, the first light pulse sequence comprising at least one light pulse and exposing a first area of the piece of carbon nanomaterial to said first light pulse sequence in a first process environment having a first oxygen content, without exposing at least part of the piece of carbon nanomaterial to said first light pulse sequence. In this way, the method comprises oxidizing locally, in the first area, at least some carbon atoms of the piece of carbon nanomaterial in such a way that at most 10% of the carbon atoms of the first area are removed from the first area; thereby patterning the first area of the piece of carbon nanomaterial. In addition a processed piece of carbon nanomaterial.
Abstract:
A process of producing a yarn, ribbon or sheet comprising nanofibers that includes infiltrating a liquid into the yarn, ribbon or sheet and evaporating the liquid from the yarn, ribbon, or sheet to strengthen the yarn, ribbon or sheet. The yarn, ribbon, or sheet can be formed by solid-state draw from a carbon nanotube forest.
Abstract:
A process of producing a yarn, ribbon or sheet that includes nanofibers in which the process includes forming a yarn, ribbon or sheet comprising nanofibers, and applying an enhancing agent comprising a polymer to the yarn, ribbon or sheet.
Abstract:
Process for manufacturing a composite material comprising functionalized carbon nanotubes and a metal matrix, to a process for manufacturing an elongated electrically conductive element, and to an electrical cable comprising such an elongated electrically conductive element.
Abstract:
A process of producing a yarn, ribbon or sheet comprising nanofibers that includes infiltrating a liquid into the yarn, ribbon or sheet and evaporating the liquid from the yarn, ribbon, or sheet to strengthen the yarn, ribbon or sheet. The yarn, ribbon, or sheet can be formed by solid-state draw from a carbon nanotube forest.
Abstract:
The present invention is directed to nanofiber yarns, ribbons, and sheets; to methods of making said yarns, ribbons, and sheets; and to applications of said yarns, ribbons, and sheets. In some embodiments, the nanotube yarns, ribbons, and sheets comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air. Furthermore these nanotube yarns can be spun as one micron diameter yarns and plied at will to make two-fold, four-fold, and higher fold yarns. Additional embodiments provide for the spinning of nanofiber sheets having arbitrarily large widths. In still additional embodiments, the present invention is directed to applications and devices that utilize and/or comprise the nanofiber yarns, ribbons, and sheets of the present invention.
Abstract:
The present invention is directed to nanofiber yarns, ribbons, and sheets; to methods of making said yarns, ribbons, and sheets; and to applications of said yarns, ribbons, and sheets. In some embodiments, the nanotube yarns, ribbons, and sheets comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air. Furthermore these nanotube yarns can be spun as one micron diameter yarns and plied at will to make two-fold, four-fold, and higher fold yarns. Additional embodiments provide for the spinning of nanofiber sheets having arbitrarily large widths. In still additional embodiments, the present invention is directed to applications and devices that utilize and/or comprise the nanofiber yarns, ribbons, and sheets of the present invention.