摘要:
The invention relates to a cold-rolled carbon steel comprising (in % by weight) C 0.63-0.85%, max. 0.40% Si, 0.20-0.90% Mn, max. 0.035% P, max. 0.035% S, max. 0.060% Al, max. 0.40% Cr, 0.003-0.010% N, preferably 0.005-0.008%, and a maximum of 0.12% of at least one micro-alloying element, the remainder being iron and steel production-related pollutants. Possible micro-alloying elements are Ti, Nb, V and optionally Zr. A carbon steel of the type is cold-rolled into texture-rolled strip steel with a high cold reduction degree and can be used in particular as a material for coiling springs or other components having spring properties.
摘要:
A method continuously creates a bainite structure in a carbon steel, especially a strip steel by austenitizing the carbon steel; introducing the austenitized carbon steel into a bath containing a quenching agent; adjusting the carbon steel to the transformation temperature for bainite and maintaining the transformation temperature for a certain period of time; and then cooling the carbon steel. The carbon steel stays in the bath until a defined percentage of the bainite structure relative to the total structure of the carbon steel has formed. Residues of the quenching agent are removed from the surface of the carbon steel by blowing the same off when the carbon steel is discharged from the bath, and the remaining structure components of the carbon steel are then transformed into bainite in an isothermal tempering station without deflecting the carbon steel at all.
摘要:
A process is for producing a ski edge for incorporation into a ski consisting of rolled and heat-treated material, at least part of the surface of which is coated with a bonding agent. In order to reduce the labour and expense and environmental pollution in the production of ski edges and improve the reliability of the bond between the edges and body of the ski, the ski edge strip material is coated with the bonding agent (primer) at least in the region of the bonding surfaces in a continuous process following the heat treatment. Thus, the ski edge strip material is kept under reducing conditions directly before coating in such a way that the surface of the strip material is free of oxide before coating.
摘要:
The invention relates to a method for continuously creating a bainite structure in a carbon steel, especially a strip steel. The method comprises the following steps: the carbon steel (1) is austenitized (3) at a temperature exceeding the austenitizing temperature; the austenitized carbon steel (1) is introduced into a bath (2) containing a quenching agent (21) in order to cool the carbon steel (1) to a temperature lying below the austenitizing temperature; the carbon steel (1) is adjusted to the transformation temperature for bainite and is maintained (13) at the transformation temperature for a certain period of time; and the carbon steel is then cooled (17). In order to further develop the method, the carbon steel (1) penetrates a bath (2) containing a quenching agent (21) until a defined percentage of the bainite structure relative to the total structure of the carbon steel (1) has formed in the bath (2) containing the quenching agent (21) following the austenitizing process, residues of the quenching agent (21) are removed from the surface of the carbon steel (1) by blowing the same off when the carbon steel (1) is discharged from the bath (2), and the remaining structure components of the carbon steel (1) are then transformed into bainite in an isothermal tempering station (13) without deflecting the carbon steel (1) at all when the same penetrates the isothermal tempering station (13).
摘要:
The invention relates to a method for shaping wire-shaped and rod-shaped starting materials by rolling, especially for rolling flat profiled elements consisting of a wire rod. The starting material is heated in a heating station at a desired temperature, shaped during at least one rolling process, and then cooled. According to the invention, once the starting material has been heated in the heating station, it is cooled in a cooling station to a pre-determinable rolling temperature; it is then shaped into a flat profiled element by rolling close to the gauge block, and then cooled and/or subjected to a subsequent treatment according to joining properties to be correspondingly adjusted. In this way, a series of different methods can be carried out by means of an installation for rolling starting materials with a patented structure, an austenite structure, a bainite structure or an undercooled austenite structure.
摘要:
The invention relates to a ski edge profile made from steel. To further improve the sliding properties compared to the ski edge profiles which are known from the prior art, according to the invention it is proposed for the ski edge profile to consist of a steel alloy with a relatively low thermal conductivity.
摘要:
The present invention relates to a method for cold-rolling metallic rolling stock (4), in which the rolling stock (4) passes through the roll nip (3) between oppositely driven rollers (2) at room temperature in order to undergo a plastic shape change. To avoid the problems caused by the use of liquid coolants and to achieve an improved surface quality of the rolling stock (4), the invention proposes that inert gas, which is at a lower temperature than the rolling-stock temperature in the roll nip, is blown into the region of the roll nip (3). The invention also relates to a cold-rolling stand for carrying out this method.
摘要:
A process is disclosed for producing a ski edge made of quenched and subsequently tempered steel having a head (2) that comprises the running surface and a flank (4) that projects into the body of the ski. The profiled edge (1) is at first rolled, then quenched and subsequently tempered over its whole cross-section. Afterwards, the flank (4) is partially tempered and provided in a separate operation with punched out openings. In order to obtain with this process a totally straight ski edge, the deviation in Rockwell hardness, seen in the direction of the cross-section and length of the profiled edge is set at less than 2.degree. HRC during quenching and subsequent tempering of the whole profiled edge. The warming-up temperature and duration during partial warming-up of the edge are the same over the whole length of the profile edge and the profiled edge is subjected to a constant bending strain before being punched.
摘要:
A method continuously creates a bainite structure in a carbon steel, especially a strip steel by austenitizing the carbon steel; introducing the austenitized carbon steel into a bath containing a quenching agent; adjusting the carbon steel to the transformation temperature for bainite and maintaining the transformation temperature for a certain period of time; and then cooling the carbon steel. The carbon steel stays in the bath until a defined percentage of the bainite structure relative to the total structure of the carbon steel has formed. Residues of the quenching agent are removed from the surface of the carbon steel by blowing the same off when the carbon steel is discharged from the bath, and the remaining structure components of the carbon steel are then transformed into bainite in an isothermal tempering station without deflecting the carbon steel at all.
摘要:
The invention relates to a cold-rolled carbon steel comprising (in % by weight) C 0.63-0.85%, max. 0.40% Si, 0.20-0.90% Mn, max. 0.035% P, max. 0.035% S, max. 0.060% Al, max. 0.40% Cr, 0.003-0.010% N, preferably 0.005-0.008%, and a maximum of 0.12% of at least one micro-alloying element, the remainder being iron and steel production-related pollutants. Possible micro-alloying elements are Ti, Nb, V and optionally Zr. A carbon steel of the type is cold-rolled into texture-rolled strip steel with a high cold reduction degree and can be used in particular as a material for coiling springs or other components having spring properties.