Abstract:
An intravascular stent assembly for implantation in a body vessel, such as a coronary artery, includes undulating circumferential rings having peaks on the proximal end and valleys on the distal end. Adjacent rings are coupled together by links. The rings and links are arranged so that the stent has good conformability as it traverses through, or is deployed in, a tortuous body lumen. The stent is also configured such that the likelihood of peaks and valleys on adjacent rings which point directly at each other to overlap in tortuous body vessels is reduced.
Abstract:
The present invention is directed to a flexible expandable stent for implantation in a body lumen, such as a coronary artery. The stent generally includes a series of metallic cylindrical rings longitudinally aligned on a common axis of the stent and interconnected by a series of links which be polymeric or metallic. Varying configurations and patterns of the links provides longitudinal and flexural flexibility to the stent while maintaining sufficient column strength to space the cylindrical rings along the longitudinal axis. The metallic material forming the rings provides the necessary radial stiffness.
Abstract:
An implantable prosthesis, for example a stent, is provided having one or more elements that form the body structure of the prosthesis. The elements have a width that is variable from a nominal or conventional width to an increased width. Depots are formed in the elements and are generally located at the increased width portions of the elements. The diameter of the depots is based on a percentage of the width of the element. As such, the depots have increased drug-loading capabilities. Substances such as therapeutic substances, polymeric materials, polymeric materials containing therapeutic substances, radioactive isotopes, and radiopaque materials can be deposited into the depots. Further, the variable width of the elements ensures that sufficient material surrounds each depot so as not to compromise the structural integrity of the prosthesis.
Abstract:
A multiple stent structure including a plurality of stent bodies arranged end to end in which adjacent stent bodies of the structure are connected by a severable connecting portion disposed between the adjacent stent bodies is disclosed. A method of coating a plurality of stents including depositing a coating on the multiple stent structure and severing the severable connecting portions to disconnect the plurality of stent bodies is disclosed.
Abstract:
The present invention is directed to a flexible expandable stent for implantation in a body lumen, such as a coronary artery. The stent generally includes a series of metallic cylindrical rings longitudinally aligned on a common axis of the stent and interconnected by a series of links which be polymeric or metallic. Varying configurations and patterns of the links provides longitudinal and flexural flexibility to the stent while maintaining sufficient column strength to space the cylindrical rings along the longitudinal axis. The metallic material forming the rings provides the necessary radial stiffness.
Abstract:
An implantable prosthesis, for example a stent, is provided having one or more elements that form the body structure of the prosthesis. The elements have a width that is variable from a nominal or conventional width to an increased width. The elements can have depots formed in the elements and are generally located at the increased width portions of the elements. Substances such as therapeutic substances, polymeric materials, polymeric materials containing therapeutic substances, radioactive isotopes, and radiopaque materials can be deposited into the depots.