Abstract:
An image reading device includes a reading unit, a background member, and processing circuitry. The reading unit includes alight source to emit light to a passage area through which an object passes and an imaging device to capture reflected light of the light emitted to generate a visible image and an invisible image. The background member is disposed opposite the light source across the passage area. The processing circuitry is configured to: detect a change in an image characteristic due to a change in an optical characteristic of the reading unit, in invisible images obtained by capturing of invisible marks on the background member; determine a correction amount of an image characteristic to be used for correcting an image of the object generated by the imaging device, based on the change in the image characteristic detected; and correct the image characteristic based on the correction amount determined.
Abstract:
An image reading device includes a background unit, a reading unit, and circuitry. The background unit is configured to be a background in reading of a recording medium and includes a first region that is black and a second region that is different from the first region. The reading unit is configured to read an image with the background unit as the background, and generate a read value based on a result of reading the image with the background unit. The circuitry is configured to correct the read value based on a reference value generated by the reading unit by reading the second region of the background unit.
Abstract:
A color inspection device includes a reading device and circuitry. The reading device images a reference object and a color detection object to obtain readings of each of the reference object and the color detection object. The circuitry corrects the readings of the color detection object by using a correction coefficient that is generated from the readings of the reference object and color information measured for each arbitrary region of the reference object.
Abstract:
A photoelectric conversion element includes: light receiving elements that convert an optical signal into an electrical signal per pixel; offset fixing units that fix an offset of an output level of each of the light receiving elements to a reference level; analog/digital conversion units that convert signals respectively corresponding to a signal level being converted from an optical signal and output by the light receiving elements and a reset level output independent of an optical signal, into digital signals, according to the reference level; amplifier units that amplify a signal; and correlated double sampling units that perform correlated double sampling per each of the light receiving elements by using a signal based on the reset level and a signal based on the signal level, wherein the amplifier units amplify the signal corresponding to the reset level and the signal corresponding to the signal level before implementing the correlated double sampling.
Abstract:
An image reading device includes a shooting unit, a light source unit, a shooting controller, and a combining unit. The light source unit sequentially irradiates the bound document with light from first and second irradiation positions opposing each other with respect to a first straight line orthogonal to a direction of a binding portion of the document. The shooting controller controls the shooting unit to shoot a first region positioned at the second irradiation position side on the document when the light source unit irradiates the document with light from the first irradiation position, and controls the shooting unit to shoot a second region containing a region other than the first region on the document when the light source unit irradiates the document with light from the second irradiation position. The combining unit combines a shot image of the first region and a shot image of the second region.
Abstract:
An image reading device includes an imaging device to capture an image of a document placed below the imaging device to generate a document image and output an image signal based on the document image, circuitry to determine a size of a fed-sheet based on information on the fed-sheet, the fed-sheet being a sheet to be formed with the document image, generate a frame image for the document image, the frame image having a size equal to the size of the fed-sheet, and synthesize the frame image with the image signal output from the imaging device to generate a synthesized image, and a display to display the synthesized image.
Abstract:
Provided is a vehicle periphery monitoring device capable of making a driver reliably recognize the shape of an object to which attention should be paid. According to an image processing unit (1) (vehicle periphery monitoring device), for example, when it is highly probable that the shape of the object is difficult to be visually recognized through the output image because of the reason that the object is present far from the vehicle or other reason, an enlarged image (Q′) of the object (Q) is displayed on an HUD (7) so as not to overlap with the object (Q).
Abstract:
An image reading apparatus includes: light-receiving elements arranged in a main-scanning direction to perform photoelectric conversion pixel by pixel; AD converter units that convert each piece of analog data photoelectric-converted by the light-receiving elements into parallel pieces of digital data; a storage unit that stores therein each of the digital data converted by the AD converter units; a converter unit that reads the digital data stored in the storage unit and converts the read digital data into serial data in the main-scanning direction; a readout control unit that changeably controls a readout start pixel and a readout end pixel of the serial data in the main-scanning direction; and a period change unit that changes a period in which the converter unit converts digital data into serial data in the main-scanning direction based on the readout start pixel and the readout end pixel.
Abstract:
The photoelectric conversion device includes a photoelectric conversion element configured to convert light reflected from an original image to electrical signals and a clock generator configured to generate driving signals for driving the photoelectric conversion element from a reference clock. Each of the driving signals is generated using the same logic gate or substantially the same logic gate.
Abstract:
An image reading apparatus includes: light-receiving elements arranged in a main-scanning direction to perform photoelectric conversion pixel by pixel; AD converter units that convert each piece of analog data photoelectric-converted by the light-receiving elements into parallel pieces of digital data; a storage unit that stores therein each of the digital data converted by the AD converter units; a converter unit that reads the digital data stored in the storage unit and converts the read digital data into serial data in the main-scanning direction; a readout control unit that changeably controls a readout start pixel and a readout end pixel of the serial data in the main-scanning direction; and a period change unit that changes a period in which the converter unit converts digital data into serial data in the main-scanning direction based on the readout start pixel and the readout end pixel.