Abstract:
A keyboard device for an electronic keyboard instrument, capable of ensuring stable contact between movable contacts and fixed contacts of a switch body, to accurately detect key depression information. A hammer has a pressure-applying surface formed in a predetermined configuration. A key switch detects key depression information and includes a substrate with fixed contacts, a hollow switch body with a pressure-receiving surface, and movable contacts provided inside the body. Pressing of the pressure-receiving surface by the pressure-applying surface sequentially brings the movable contacts into contact with the fixed contacts, causing switch body compressive deformation. The pressure-receiving surface and pressure-applying surface are complementary in shape, and an orientation of the former conforms to an orientation of the latter when hammer pivotal motion is terminated after the movable contacts are brought into contact with the fixed contacts.
Abstract:
A planar light guide includes recesses formed in the upper and lower surfaces thereof. The recesses in the lower surface are perpendicular to the recesses in the upper surface. In a state in which light sources emit light into the planar light guide, when an X-direction driving mechanism is driven and the planar light guide is deformed in the X directions, the recesses in the upper surface are opened, so that the lower surface side can perform surface emission of light. When a Y-direction driving mechanism is driven and the planar light guide is deformed in the Y directions, the recesses in the lower surface are opened, so that the upper surface side can perform surface emission of light. By selectively driving the X-direction driving mechanism or the Y-direction driving mechanism, the position from which light is output, the amount of light, or the direction of light can be changed.
Abstract:
A method for producing a branched-polyether resin composition of the present invention includes a first step of obtaining a reaction mixture including: (1-A) a branched-polyether resin (X) containing a hydroxyl group, an acryloyl group, and an epoxy group and (1-B) at least one resin component selected from the group consisting of (1-B-1) a diacrylate (A2) of an aromatic difunctional epoxy resin, (1-B-2) a monoacrylate (A1) of an aromatic difunctional epoxy resin, and (1-B-3) an aromatic difunctional epoxy resin (B) other than (A1) and (A2); and a second step of mixing the reaction mixture and an unsaturated monocarboxylic acid, and reacting the epoxy group in the reaction mixture and a carboxyl group in the unsaturated monocarboxylic acid.
Abstract:
The object of the present invention is to provide a thermosetting resin composition which can provide a cured material which is excellent in heat resistance, electrical properties, and flexibility, and has storage stability before curing, and in order to achieve the object, the present invention provide a thermosetting resin composition containing a polyurethane resin (A) which has the structure represented by the following general formula (1) and/or the general formula (2), and an epoxy resin (B). (In the chemical formulae, X represents a residue in which two phenolic hydroxyl groups are excluded from a phenol compound having two or more phenolic hydroxyl groups in the molecule.)
Abstract:
A method for producing a branched-polyether resin composition of the present invention includes a first step of obtaining a reaction mixture including: (1-A) a branched-polyether resin (X) containing a hydroxyl group, an acryloyl group, and an epoxy group and (1-B) at least one resin component selected from the group consisting of (1-B-1) a diacrylate (A2) of an aromatic difunctional epoxy resin, (1-B-2) a monoacrylate (A1) of an aromatic difunctional epoxy resin, and (1-B-3) an aromatic difunctional epoxy resin (B) other than (A1) and (A2); and a second step of mixing the reaction mixture and an unsaturated monocarboxylic acid, and reacting the epoxy group in the reaction mixture and a carboxyl group in the unsaturated monocarboxylic acid.
Abstract:
A confocal microscope apparatus has a confocal scanner for scanning a sample with shifting a focal position of a light beam in a direction perpendicular to an optical axis, a moving mechanism for moving the focal position of the light beam in an optical axis direction, a camera for picking up an image of the sample with the light beam, and a movement control unit for controlling the moving mechanism to move the focal position of the light beam by a predetermined distance in the optical axis direction for every vertical synchronizing signal of the camera in synchronization with the vertical synchronizing signal. A high-speed three-dimensional image can be displayed in such that while measuring the sample, two or more slice images in such an arrangement on a common screen that their positions relative to the sample enables to be grasped.
Abstract:
An object of the present invention is to provide an antithrombotic agent that has fewer side effects and that is highly effective. The present invention provides an antithrombotic agent comprising (±)-[2-[4-(3-ethoxy-2-hydroxypropoxy)phenylcarbamoyl]ethyl]dimethylsulfonium p-toluenesulfonate represented by Formula (1) as an active ingredient.
Abstract:
A confocal microscope apparatus has a confocal scanner for scanning a sample with shifting a focal position of a light beam in a direction perpendicular to an optical axis, a moving mechanism for moving the focal position of the light beam in an optical axis direction, a camera for picking up an image of the sample with the light beam, and a movement control unit for controlling the moving mechanism to move the focal position of the light beam by a predetermined distance in the optical axis direction for every vertical synchronizing signal of the camera in synchronization with the vertical synchronizing signal. A high-speed three-dimensional image can be displayed in such that while measuring the sample, two or more slice images in such an arrangement on a common screen that their positions relative to the sample enables to be grasped.
Abstract:
A confocal microscope apparatus has a confocal scanner for scanning a sample with shifting a focal position of a light beam in a direction perpendicular to an optical axis, a moving mechanism for moving the focal position of the light beam in an optical axis direction, a camera for picking up an image of the sample with the light beam, and a movement control unit for controlling the moving mechanism to move the focal position of the light beam by a predetermined distance in the optical axis direction for every vertical synchronizing signal of the camera in synchronization with the vertical synchronizing signal. A high-speed three-dimensional image can be displayed in such that while measuring the sample, two or more slice images in such an arrangement on a common screen that their positions relative to the sample enables to be grasped.
Abstract:
A confocal microscope apparatus has a confocal scanner for scanning a sample with shifting a focal position of a light beam in a direction perpendicular to an optical axis, a moving mechanism for moving the focal position of the light beam in an optical axis direction, a camera for picking up an image of the sample with the light beam, and a movement control unit for controlling the moving mechanism to move the focal position of the light beam by a predetermined distance in the optical axis direction for every vertical synchronizing signal of the camera in synchronization with the vertical synchronizing signal. A high-speed three-dimensional image can be displayed in such that while measuring the sample, two or more slice images in such an arrangement on a common screen that their positions relative to the sample enables to be grasped.