摘要:
In manufacturing surface conduction electron-emitting devices, a polymer thin film is arranged to connect a pair of electrodes and then transformed into a low resistivity film (carbon film) by irradiating the polymer film with an energy beam. The energy beam irradiation is scanned over the polymer films plural times so that heat due to the energy beam irradiation does not affect other members which constitute the device and also the processing time for carbonization of polymer film is reduced.
摘要:
In a process of reducing a resistivity of a polymer film for carbonization in a surface conduction electron-emitting device, by irradiating an energy beam onto the polymer film, when an energy intensity of the beam given in a unit area in a unit time is assumed to be W W/m2, W satisfies a formula W≧2×T×(ρsub·Csub·λsub/τ)1/2, where T is defined as a temperature ° C. at which the polymer film is heated for one hour in a vacuum degree of 1×10−4 Pa to reduce a resistivity of the polymer film to 0.1 Ω·cm, Csub is a specific heat J/kg·K of the substrate, ρsub is a specific gravity kg/m3 of the substrate, λsub is a heat conductivity W/m·K of the substrate, and τ is an irradiation time in the range of 10−9 sec to 10 sec.
摘要:
This invention provides an image-forming apparatus manufacturing method capable of simplifying the electron-emitting device forming process and manufacturing a low-cost image-forming apparatus exhibiting high display quality for a long term. A plurality of electrode pairs each formed from electrodes are formed on a first substrate. Polymer films for connecting the electrodes are arranged. Then, the polymer films are irradiated with a laser beam or particle beam to reduce the resistances at least partially and change the polymer films into conductive films containing carbon as a main component. A current is flowed between the electrodes to form gaps in parts of the conductive films. The first substrate, and the second substrate on which an image-forming member is arranged are joined via bonding in a reduced-pressure atmosphere, constituting an image-forming apparatus.
摘要:
A liquid crystal device comprising a first substrate on which a first group of belt-shaped electrodes are formed, a second substrate on which a second group of belt-shaped electrodes are formed so as to cross the first group of belt-shaped electrodes, and a chiral smectic liquid crystal arranged between the first and second, substrates. A first pretilt angle of the liquid crystal on the first group of belt-shaped electrodes differs from a second pretilt angle of the liquid crystal in the spaces among the belt-shaped electrodes. The difference in pretilt angles is created by forming a resist over the spaces between the belt-shaped electrode, rubbing, removing the resist, and rubbing again.
摘要:
A liquid crystal device comprising a first substrate on which a first group of belt-shaped electrodes are formed, a second substrate on which a second group of belt-shaped electrodes are formed so as to cross the first group of belt-shaped electrodes, and a chiral smectic liquid crystal arranged between the first and second substrates. A first pretilt angle of the liquid crystal on the first group of belt-shaped electrodes differs from a second pretilt angle of the liquid crystal in the spaces among the belt-shaped electrodes. The difference in pretilt angles is created by forming a resist over the spaces between the belt-shaped electrodes, rubbing, removing the resist, and rubbing again.
摘要:
A liquid crystal device having a first substrate on which a first group of belt-shaped electrodes are formed, a second substrate on which a second group of belt-shaped electrodes are formed so as to cross the first group of belt-shaped electrodes, and a chiral smectic liquid crystal arranged between the first and second substrates, wherein a first orientation film formed on the first group of belt-shaped electrodes and second orientation films formed in spaces among the belt-shaped electrodes are different.
摘要:
A liquid crystal device comprising a first substrate on which a first group of belt-shaped electrodes are formed, a second substrate on which a second group of belt-shaped electrodes are formed so as to cross the first group of belt-shaped electrodes, and a chiral smectic liquid crystal arranged between the first and second substrates, wherein a first pretilt angle of the liquid crystal on the first group of belt-shaped electrodes differs from a second pretilt angle of the liquid crystal in the spaces between the belt-shaped electrodes.
摘要:
In a process of reducing a resistivity of a polymer film for carbonization in a surface conduction electron-emitting device, by irradiating an energy beam onto the polymer film, when an energy intensity of the beam given in a unit area in a unit time is assumed to be W W/m2, W satisfies a formula W≧2×T×(ρsub·Csub·λsub/τ)1/2, where T is defined as a temperature ° C. at which the polymer film is heated for one hour in a vacuum degree of 1×10−4 Pa to reduce a resistivity of the polymer film to 0.1 Ω·cm, Csub is a specific heat J/kg·K of the substrate, ρsub is a specific gravity kg/m3 of the substrate, λsub is a heat conductivity W/m·K of the substrate, and τ is an irradiation time in the range of 10−9 sec to 10 sec.
摘要:
An optical phase-change disc comprises a substrate having thereon a spiral groove or concentric grooves for guiding a focused light beam, and a layer structure including a recording layer and protective layers sandwiching therebetween the recording layer. The groove has wobble for recording ATIP (absolute time information) or ADIP (address information). The following relationship between the groove width GW, beam diameter R.sub.0 and wobble amplitude a.sub.w :0.25.ltoreq.GW/R.sub.0 .ltoreq.0.45or0.65.ltoreq.GW/R.sub.0 ;and0.03.ltoreq.a.sub.w /GW.ltoreq.0.08hold for preventing distortion of the groove caused by repeated overwriting operation to improve reliability of the optical disc.
摘要:
There is provided a wireless communication module structured by integrally united forming on a film-like flexible board, a transmitting-receiving antenna section for transmitting and receiving RF signals (high frequency signals), a transmission line section for transmitting the RF signals, and a high frequency circuit section, wherein the film-like flexible board has a plurality of seamless conductor layers formed thereon, and dielectric constants of insulating layers formed between a plurality of the seamless conductor layers or in the vicinity thereof are different between in an area of the transmitting-receiving antenna section and in an area of the transmission line section and the high frequency circuit section.