摘要:
For recording information at high density even at blue-laser wavelengths a write-once-read-many optical recording medium includes a first inorganic thin film and at least one of a second inorganic thin film and an organic thin film, in which the first inorganic thin film contains at least “R” and “O,” wherein “R” is at least one selected from Y, Bi, In, Mo, V and lanthanum series elements; and “O” is oxygen atom, and the second inorganic thin film and the organic thin film are capable of suppressing at least one of deformation and breakage of the first inorganic thin film and receiving the change of state of the first inorganic thin film.
摘要:
For recording information at high density even at blue-laser wavelengths, a write-once-read-many optical recording medium includes a first inorganic thin film and at least one of a second inorganic thin film and an organic thin film, in which the first inorganic thin film contains at least “R” and “O,” wherein “R” is at least one selected from Y, Bi, In, Mo, V and lanthanum series elements; and “O” is oxygen atom, and the second inorganic thin film and the organic thin film are capable of suppressing at least one of deformation and breakage of the first inorganic thin film and receiving the change of state of the first inorganic thin film.
摘要:
An information recording medium including a transparent substrate, and a recording layer or a metallic layer formed on the transparent substrate directly or through an undercoat layer, with an amplitude attenuation time of 1 second or less and/or a vibration frequency attenuation time of 3 seconds or less, when vibrated in the direction perpendicular to the flat surface of said information recording medium, or wherein when the information recording medium is in-plane vibrated in the direction perpendicular to the extending direction of information recording, reproducing and/or deleting tracks, a maximum in-plane deviation of a recording, reproducing or deleting position in the tracks in the perpendicular direction from a correct recording, reproducing or deleting position in the tracks is 12.5×d or less wherein d is an average distance between the adjoining tracks measured in the direction perpendicular to the extending direction of the tracks, and an acceleration of the information recording medium in the perpendicular direction is 0.25 m/s2 or less.
摘要翻译:一种信息记录介质,包括透明基板,以及直接或通过底涂层形成在透明基板上的振幅衰减时间为1秒以下和/或振动频率衰减时间为3秒的记录层或金属层 或更少,当垂直于所述信息记录介质的平坦表面的方向振动时,或者当信息记录介质在垂直于信息记录,再现和/或删除轨迹的延伸方向的方向上在平面内振动时, 在轨道中正确记录,再现或删除位置的轨道中的记录,再现或删除位置的最大面内偏差为12.5xd或更小,其中d是在相邻轨迹之间测量的平均距离 与轨道的延伸方向垂直的方向,以及信息re的加速度 垂直方向的缠绕介质为0.25m / s 2以下。
摘要:
An optical data recording medium having a recording layer with or without an underlayer layered on a transparent substrate, wherein said recording layer is composed of a difficult-to-dissolve-in-water organic dye type material on which a thin layer composed of a surface active polymer as a hydrophilic material, which is denaturated by cross-linking.
摘要:
To provide a nonaqueous electrolytic storage element, which contains: a positive electrode, which contains a positive electrode material layer including a positive electrode active material capable of reversibly accumulating and releasing anions; a negative electrode, which contains a negative electrode material layer including a negative electrode active material capable of reversibly accumulating and releasing cations; a separator provided between the positive electrode and the negative electrode; and a nonaqueous electrolyte containing an electrolyte salt, wherein a pore volume of the negative electrode material layer per unit area of the negative electrode is larger than a pore volume of the positive electrode material layer per unit area of the positive electrode.
摘要:
A nonaqueous electrolyte secondary battery, which contains: an anode capable of accumulating or releasing metal lithium, or a lithium ion, or both; a cathode relative to the anode; and a nonaqueous electrolyte, in which a lithium salt is dissolved in a nonaqueous solvent, wherein, after repeating charge of the nonaqueous electrolyte secondary battery to an overcharge region and discharge for the charge 20 times, a charge capacity of the nonaqueous electrolyte secondary battery for 21st charge is a capacity equal to or greater than 100% SOC (State of Charge), where 100% SOC is an arbitrary capacity indicating that electric potential of the anode is reduced by 5% or greater based on a relative value, compared to electric potential thereof when SOC is 0%.
摘要:
To provide a nonaqueous electrolytic storage element, which contains: a positive electrode, which contains a positive electrode material layer including a positive electrode active material capable of reversibly accumulating and releasing anions; a negative electrode, which contains a negative electrode material layer including a negative electrode active material capable of reversibly accumulating and releasing cations; a separator provided between the positive electrode and the negative electrode; and a nonaqueous electrolyte containing an electrolyte salt, wherein a pore volume of the negative electrode material layer per unit area of the negative electrode is larger than a pore volume of the positive electrode material layer per unit area of the positive electrode.
摘要:
A two-photon absorption material represented by the following General Formula (I): where R1 to R8 each represent hydrogen, halogen, a carboxyl group, a carboxylic acid ester group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group; one to three of X1 to X4 each represent a substituted or unsubstituted amino group, a substituted or unsubstituted aminophenyl group, a substituted or unsubstituted dialkylaminophenyl group, a substituted or unsubstituted N,N-diphenyl-aminophenyl group, a substituted or unsubstituted indolyl group, or a substituted or unsubstituted azulenyl group, and the other represents or the others each represent hydrogen, halogen, a carboxyl group, a carboxylic acid ester group, a substituted or unsubstituted aryl group, a substituted or unsubstituted pyridinyl group, a substituted or unsubstituted alkyl group or a perhalogenoalkyl group; and M represents two hydrogen atoms or a divalent, trivalent or tetravalent metal atom which may have oxygen or halogen.
摘要:
An object of the invention is to provide an optical-recording medium in which problems such as cross-write, i.e., signals are recorded wrongly on adjacent tracks, and cross-erase i.e., recording signals on adjacent tracks are erased wrongly, can be solved, and which enables high-density recording; a method for producing the optical-recording medium; and a method for recording and reproducing an optical-recording medium. To achieve this object, the optical-recording medium includes a substrate, an optical-absorption layer which absorbs light and generates heat on or above the substrate, a recording layer, and record-blocking portions which block recording on the recording layer, in which the record-blocking portions are disposed between the recording layer and the optical-absorption layer, and between adjacent tracks, and recording marks are formed on the recording layer by the optical absorption function of the optical-absorption layer.
摘要:
An object of the invention is to provide an optical-recording medium in which problems such as cross-write, i.e., signals are recorded wrongly on adjacent tracks, and cross-erase i.e., recording signals on adjacent tracks are erased wrongly, can be solved, and which enables high-density recording; a method for producing the optical-recording medium; and a method for recording and reproducing an optical-recording medium. To achieve this object, the optical-recording medium includes a substrate, an optical-absorption layer which absorbs light and generates heat on or above the substrate, a recording layer, and record-blocking portions which block recording on the recording layer, in which the record-blocking portions are disposed between the recording layer and the optical-absorption layer, and between adjacent tracks, and recording marks are formed on the recording layer by the optical absorption function of the optical-absorption layer.