Abstract:
A thick film heater is shown wherein the thick film resistive circuit, as the heating element, is applied directly to a target object to be heated for very low temperature applications. The thick film used is polymer-based (preferably epoxy). The thick film resistive circuit is applied using conventional means. However, it is cured at higher temperatures and longer cycles than conventional thick film circuits, and preferably in multiple stages.
Abstract:
A method of securing a terminal to a ceramic heater is provided by the present disclosure. The ceramic heater includes a ceramic substrate and a resistive heating element, and the method includes exposing a portion of the resistive heating element, forming an intermediate layer on at least one of the portion of the resistive heating element and the ceramic substrate proximate the portion of the resistive heating element, the intermediate layer being selected from a group consisting of Mo/AlN and W/AlN, and bonding the terminal to the intermediate layer.
Abstract:
A method of securing a terminal to a ceramic heater is provided by the present disclosure. The ceramic heater includes a ceramic substrate and a resistive heating element, and the method includes exposing a portion of the resistive heating element, forming an intermediate layer on at least one of the portion of the resistive heating element and the ceramic substrate proximate the portion of the resistive heating element, the intermediate layer being selected from a group consisting of Mo/AlN and W/AlN, and bonding the terminal to the intermediate layer.
Abstract:
Methods of securing a thermocouple to a ceramic substrate are provided. The thermocouple includes a pair of wires that define a junction, and the method comprises directly bonding the junction of the thermocouple to the ceramic substrate. In one form, the junction is directly bonded using an active brazing material.
Abstract:
A ceramic heater is provided that includes a power terminal for connecting a resistive heating element to a power source. An intermediate layer is disposed on an AlN ceramic substrate proximate the resistive heating element. The power terminal is bonded to the intermediate layer by an active brazing material. The intermediate layer is formed of Mo/AlN or W/AlN and has a coefficient of thermal expansion between that of the active brazing material and that of the AlN ceramic substrate so that thermal stress generated in the ceramic substrate can be reduced.
Abstract:
A method for manufacturing an electrostatic chuck is disclosed wherein a sintered ceramic body having a dielectric layer made from Alumina (Al2O2) and Titanium Nitride (TiN) having a specific range of particle size is heat treated in an oxygen-rich environment in order to produce a uniform dielectric layer having no pores or micro-cracks.
Abstract translation:公开了一种用于制造静电卡盘的方法,其中在富氧环境中对具有特定粒度范围的氧化铝(Al 2 O 2)和氮化钛(TiN)制成的电介质层的烧结陶瓷体进行热处理,以便产生 没有孔或微裂纹的均匀介电层。
Abstract:
Methods of securing a thermocouple to a ceramic substrate are provided. The thermocouple includes a pair of wires that define a junction, and the method comprises directly bonding the junction of the thermocouple to the ceramic substrate. In one form, the junction is directly bonded using an active brazing material.
Abstract:
A ceramic heater is provided that includes a thermocouple having a hot or measuring junction in a form of a bead directly bonded to a ceramic substrate by an active brazing material. Alternatively, a metallized layer is provided on the ceramic substrate and the bead of the thermocouple is directly bonded to the metallized layer by an ordinary brazing material. Due to the direct bonding of the bead to a ceramic substrate, the temperature of the bead reflects the temperature of the ceramic heater almost instantaneously so that the thermocouple can more accurately measure the temperature of the ceramic heater.
Abstract:
A heater for wafer processing, such as thin film deposition, includes a first heating unit and a second heating unit. The first heating unit includes a substrate with a top surface for supporting a wafer thereon and a back surface. The second heating unit is disposed proximate the back surface of the substrate and is preferably disposed inside an inner space of a shaft supporting the first heating unit in a processing chamber. The first heating unit and the second heating unit are independently controlled. The second heating unit is designed based on the actual temperature profile and heat loss on the top surface. Therefore, the second heating unit can more effectively compensate the heat loss to achieve a more uniform temperature profile on the top surface.
Abstract:
An in-line heater for use in semiconductor wet chemical processing comprises a single crystal alumina substrate, a resistive heating element disposed on the single crystal alumina substrate, and a protective layer disposed over the resistive heating element. The single crystal alumina substrate has a moderate coefficient of thermal expansion (CTE) that is substantially equivalent to the CTEs of the resistive heating element and the protective layer. Therefore, cracking between the substrate and the protective layer can be minimized. The in-line heater in accordance with this invention exhibits an excellent corrosion-resistance capability even at high temperature and can carry a wide variety of corrosive chemicals including hydrofluoride solution.