Abstract:
A cold therapy system including a cooling bath; a therapy pad in fluid communication with the cooling bath; a pump positioned and arranged to pump water from the cooling bath to the therapy pad and back to the cooling bath; and a control unit controlling the pump, the control unit programmed to operate the pump according to a cycle in which the pump is operated at less than maximum to cause the therapy pad temperature to be raised and to conserve a cooling resource within the cooling bath.
Abstract:
A cold therapy system including a cooling bath; a therapy pad in fluid communication with the cooling bath; a pump positioned and arranged to pump water from the cooling bath to the therapy pad and back to the cooling bath; and a control unit controlling the pump, the control unit programmed to operate the pump according to a cycle in which the pump is operated at less than maximum to cause the therapy pad temperature to be raised and to conserve a cooling resource within the cooling bath.
Abstract:
A pressure therapy system includes an air pump; a pneumatic line pressurized by the air pump; and a cuff in fluid communication with the pneumatic line, the cuff including flaps sized and shaped to extend around a user's limb, a first chamber and a second chamber separated fluidly by the cuff from the first chamber, wherein the pneumatic line splits into first and second line segments or openings, the first line segment or opening communicating fluidly with the first separated chamber, the second line segment or opening communicating fluidly with the second separated chamber, and wherein the second line segment or opening or a pathway of the cuff leading to the second separated chamber includes a flow restricting structure that delays pressurized air from reaching the second chamber relative to the first chamber.
Abstract:
A pinch valve mechanism for a parenteral infusion system is provided which includes a spring-loaded pinch valve. The pinch valve is manually latched to its open position. A bobbin and cam mechanism includes a length of wire which contracts when a current is applied to it. The cam has two positions, one which holds the pinch valve in its open position and one which enables to pinch valve to close. When it is desired to automatically close the pinch valve, a current is applied to the wire. The contraction of the wire moves the cam from its valve open position to its alternate position, permitting the pinch valve to spring closed.
Abstract:
A pressure therapy system includes an air pump; a pneumatic line pressurized by the air pump; and a cuff in fluid communication with the pneumatic line, the cuff including flaps sized and shaped to extend around a user's limb, a first chamber and a second chamber separated fluidly by the cuff from the first chamber, wherein the pneumatic line splits into first and second line segments or openings, the first line segment or opening communicating fluidly with the first separated chamber, the second line segment or opening communicating fluidly with the second separated chamber, and wherein the second line segment or opening or a pathway of the cuff leading to the second separated chamber includes a flow restricting structure that delays pressurized air from reaching the second chamber relative to the first chamber.
Abstract:
The present invention relates to a replaceable module for use with a thermal contrast therapy systems. The replaceable module may be an automated thermal contrast therapy module which includes a casing, a manual mixing valve, an automated mixing valve, an automated mixing valve actuator, a temperature sensor, and an interface. A cold and a hot fluid are mixed to generate a therapy fluid. The therapy fluid may be output to a therapy bladder. The second replaceable module is a compression therapy module which includes a casing, an air pump, a pneumatic solenoid, and a pressure monitor. The casing may include a pressurized air pathway including an air outlet. The pump may pressurize the air within the pathway, and the solenoid may regulate the air pressure using feedback from the pressure sensor. Additionally, a pressure relief valve may release pressure if it gets above a safety threshold. The compression therapy module may also include a fluid pathway.
Abstract:
The present invention relates to a therapeutic spinal column brace system, comprising an active thermal exchange layer for providing thermal contrast therapy to a therapy site, an active compression bladder for providing compression to the therapy site, at least one cushion layer for comfort, a rigid shell including at least one rigid support brace, and an adjustable strapping system to secure the therapeutic spinal column brace system to the spinal column therapy site. In some embodiment an active amalgamated bladder or a thermal exchange and compression bladder may be used in lieu of the thermal exchange bladder and the compression bladder. By regulating the pressure within the bladders the compression may be steady or pulsating to achieve a therapeutic effect. A contrast therapy system comprising a hot reservoir, a cold reservoir, a mixing valve, and a fluid pump for delivering the therapy fluid to the therapeutic spinal column brace system may be utilized.
Abstract:
The present invention relates to a therapeutic cranial wrap for use with a thermal contrast therapy systems and methods for providing a temperature regulated fluid. The cranial wrap includes an active thermal exchange bladder and an active compression bladder, adapted to fit the cranial therapy site. The thermal exchange bladder may be coupled to the thermal contrast therapy system. The compression bladder may compress the therapy site. In some embodiments, the compressive bladder may be integrated into the thermal exchange bladder, or may be omitted. The cranial wrap also includes a contoured shell, known as a hood shaped therapy pad, which is adapted to snugly fit the cranial therapy site and provide neck support. Adjustable straps, including at least one strap that circumvents the cranium, secure the cranial wrap in a fitted position adjacent the therapy site. The cranial wrap couples to the thermal contrast therapy system which includes a hot and cold fluid reservoir, a mixing valve, and a fluid pump.
Abstract:
A fluid circuit connector system includes a quick-release connector for connecting a set of tubes to an object. The quick-release connector includes a release button, a lock arm, a lock tab and a cavity configured to receive the tubes and a set of coupler housings. The connector system includes an object fitting having lock recess may be configured to receive the lock tab. The object fitting includes a cavity. The system further includes a set of male coupler housings each including a first unitary valve and a set of female coupler housings each including a second unitary valve. Each female housing is configured to receive and engage one of the male coupler housings. The system includes a set of seals configured to seal each male coupler housing and each female coupler housing when the quick-release connector is connected to the object fitting.
Abstract:
The present invention relates to a therapeutic knee brace system including a leg brace for support, a retainer for securing the therapeutic knee brace system to a knee joint therapy site, a brace joint providing a limited range of flexion to the knee brace, and an active thermal exchange bladder coupled to a contrast therapy system for delivering a therapy fluid at a select temperature, pressure and rate. Thermal exchange bladder is removable, and the pressure may be constant or dynamic. The angle of flexion may be selected by the therapy recipient, and the range of flexion of the brace joint is configurable. The knee brace may communicate range and instant angle of flexion of the brace joint to a continuous passive motion (CPM) device, and communication may be mechanical, electronic or wireless. A knee brace coupler attaches to a CPM coupler on the CPM device to selectively couple the therapeutic knee brace system to the CPM device.