Abstract:
A disk layout method for object-based storage devices is disclosed. A disk is initialized and a root object is added while a set of blocks of the disk are configured to store attributes of the root object, a free block index table, and a partition object index table. When a partition object is added, a set of blocks of the disk are configured to store attributes of the partition object, a collection object index table, and a user object index table, wherein the partition object indexes the location of a collection object according to the collection object index table and the location of a user object according to the user object index table. When a collection or user object is added, necessary blocks of the disk are configured to store individual data.
Abstract:
A chip sorting apparatus comprising a chip holder comprising a first surface and an second surface opposite to the first surface; a wafer comprising a first chip disposed on a first position of the first surface; a first chip receiver comprising a third surface and an fourth surface opposite to the third surface, wherein the third surface is opposite to the first surface; a pressurization device making the first chip and the third surface of the first chip receiver adhered to each other through pressuring the second surface at where corresponding to the first position; and a separator decreasing the adhesion between the first chip and the first surface.
Abstract:
A multimedia file sharing method and a system thereof are provided herein, which applies the virtual file technology to achieve near real time multimedia sharing and transparent receiving functions. In the method, an interface software system is established through a network to speed up playing of multimedia files by different multimedia players. The interface software provides a speeding up and near real time multimedia playing effect for sharing multimedia through the network, by which for different transmissions of multimedia files or for playing multimedia files with different formats, the multimedia player is not necessary to modify or add the software of the players to meet the streaming protocols or container. In addition, the interface software is capable of providing the effect of playing the multimedia files by the players with satisfied quality and near real time performance.
Abstract:
A disk layout method for object-based storage devices is disclosed. A disk is initialized and a root object is added while a set of blocks of the disk are configured to store attributes of the root object, a free block index table, and a partition object index table. When a partition object is added, a set of blocks of the disk are configured to store attributes of the partition object, a collection object index table, and a user object index table, wherein the partition object indexes the location of a collection object according to the collection object index table and the location of a user object according to the user object index table. When a collection or user object is added, necessary blocks of the disk are configured to store individual data.
Abstract:
A multimedia file sharing method and a system thereof are provided herein, which applies the virtual file technology to achieve near real time multimedia sharing and transparent receiving functions. In the method, an interface software system is established through a network to speed up playing of multimedia files by different multimedia players. The interface software provides a speeding up and near real time multimedia playing effect for sharing multimedia through the network, by which for different transmissions of multimedia files or for playing multimedia files with different formats, the multimedia player is not necessary to modify or add the software of the players to meet the streaming protocols or container. In addition, the interface software is capable of providing the effect of playing the multimedia files by the players with satisfied quality and near real time performance.
Abstract:
Distributed network-based data backup, recovery and deletion methods and a distributed network system thereof are provided. The methods include respectively establishing peer-to-peer connections between a host storage server and a plurality of peer storage servers, dividing original data into a plurality of data segments, generating a plurality of data segment copies corresponding to the data segments according to a minimum survival rate and the number of peer storage servers. The methods also include transmitting the data segment copies to the peer storage servers, wherein the number of data segment copies for each of the data segments is equal to a redundancy, and the redundancy is smaller than the number of the peer storage servers, and the data segment copies distributed to any one of the peer storage servers correspond to a portion of all the data segments. Accordingly, the methods can effectively and safely backup the original data.
Abstract:
Distributed network-based data backup, recovery and deletion methods and a distributed network system thereof are provided. The methods include respectively establishing peer-to-peer connections between a host storage server and a plurality of peer storage servers, dividing original data into a plurality of data segments, generating a plurality of data segment copies corresponding to the data segments according to a minimum survival rate and the number of peer storage servers. The methods also include transmitting the data segment copies to the peer storage servers, wherein the number of data segment copies for each of the data segments is equal to a redundancy, and the redundancy is smaller than the number of the peer storage servers, and the data segment copies distributed to any one of the peer storage servers correspond to a portion of all the data segments. Accordingly, the methods can effectively and safely backup the original data.
Abstract:
A chip sorting apparatus comprising a chip holder comprising a first surface and an second surface opposite to the first surface; a wafer comprising a first chip disposed on a first position of the first surface; a first chip receiver comprising a third surface and an fourth surface opposite to the third surface, wherein the third surface is opposite to the first surface; a pressurization device making the first chip and the third surface of the first chip receiver adhered to each other through pressuring the second surface at where corresponding to the first position; and a separator decreasing the adhesion between the first chip and the first surface.