Abstract:
The invention relates to a method for producing a porous electrode, said electrode comprising a layer deposited on a substrate, said layer being binder-free and having a porosity of more than 30 volume %, and preferably less than 50 volume %, and pores having an average diameter of less than 50 nm, said method being characterized in that:
a colloidal suspension is provided, containing aggregates or agglomerates of nanoparticles of at least one material P having an average primary diameter D50 of less than or equal to 80 nm, and preferably less than or equal to 50 nm, said aggregates or agglomerates having an average diameter comprised between 80 nm and 300 nm (preferably between 100 nm and 200 nm), a substrate is provided, a porous, preferably mesoporous, electrode layer is deposited on said substrate by electrophoresis, by ink-jet, by doctor blade, by roll coating, by curtain coating or by dip-coating, from said colloidal suspension provided in step (a); said layer obtained in step (c) is dried, preferably in an air flow, optionally, consolidation of the porous, preferably mesoporous electrode layer obtained in step (d) by pressing and/or heating.
Abstract:
A method for manufacturing an electrode having a porosity of between 20% and 60% by volume and pores with an average diameter of less than 50 nm. In the method, provision is made of a substrate and a colloidal suspension of aggregates or agglomerates of monodisperse primary nanoparticles of an active electrode material, having an average primary diameter D50 of between 2 and 100 nm, the aggregates or agglomerates having an average diameter D50 of between 50 nm and 300 nm. A layer is deposited from said colloidal suspension on the substrate. The deposited layer is then dried and consolidated to obtain a mesoporous layer. A coating of an electronically conductive material is then deposited on and inside the pores of the porous layer. Such a porous electrode can be used in lithium-ion microbatteries.
Abstract:
A method for manufacturing an electrochemical device, implementing a process for manufacturing a porous electrode having a porous layer deposited on a substrate, the porous layer having a porosity of between 20% and 60% by volume and pores with an average diameter of less than 50 nm. The method includes providing a substrate and a colloidal suspension including aggregates or agglomerates of monodisperse primary nanoparticles of an active electrode material, having an average primary diameter of between 2 and 60 nm, the aggregates or agglomerates having an average diameter of between 50 nm and 300 nm, then depositing a layer from the colloidal suspension on the substrate, then drying and consolidating the layer to obtain a mesoporous layer, and then depositing a coating of an electronically conductive material on and inside the pores of the layer.
Abstract:
Contact unit for an electronic or electrochemical device such as a battery, intended to create electrical contact with an external conductor element, said electronic or electrochemical device comprising a contact surface defining an electrical connection area, characterized in that the contact unit comprises a first layer, arranged on at least the electrical connection area, this first layer comprising a material filled with electrically conductive particles, preferably a polymer resin and/or a material obtained using a sol-gel process and filled with electrically conductive particles, and even more preferably a polymer resin filled with graphite.
Abstract:
An all-solid battery including a solid electrolyte made of a cross-linked polymer material, and which has good mechanical resistance and superior ionic conductivity.
Abstract:
A process for fabrication of a battery that includes providing a colloidal suspension of particles conducting lithium ions and providing two conducting substrates as battery current collectors, at least one surface of the conducting substrates being at least partially coated with one of a cathode film and an anode film, and depositing an electrolyte film by electrophoresis, from a suspension of electrolyte material particles, on at least one of said anode film, said cathode film and said conducting substrates.
Abstract:
The invention relates to a process for fabrication of an electrode film in an all-solid-state battery comprising successive steps to: a) Procure a substrate, preferably a conducting substrate, b) Deposit an electrode film on said substrate by electrophoresis, from a suspension containing particles of electrode materials, c) Dry the film obtained in the previous step, d) Thermal consolidation of the electrode film obtained in the previous step by sintering, sintering being done at a temperature TR that preferably does not exceed 0.7 times the melting temperature (expressed in ° C.), even more preferably does not exceed 0.5 times the melting temperature (expressed in ° C.), and much more preferably does not exceed 0.3 times the melting temperature (expressed in ° C.) of the electrode material that melts at the lowest temperature.
Abstract:
Battery including at least one unit cell formed by an anode, an electrolyte, and a cathode, defining a stack. The stack of the battery has a plurality of faces that includes two end faces opposite one another, two lateral faces opposite one another, and two longitudinal faces opposite one another. The first longitudinal face includes at least one anode connection zone and a second longitudinal face of the battery includes at least one cathode connection zone that is laterally opposite to the at least one anode connection zone. In a first longitudinal direction of the battery, each anode current-collecting substrate protrudes from each anode layer, from each layer of electrolyte material or layer of a separator impregnated with an electrolyte, from each cathode layer and from each cathode current-collecting substrate layer. In a second longitudinal direction of the battery that is opposite to the first longitudinal direction, each cathode current-collecting substrate protrudes from each anode layer, from each layer of electrolyte material, or layer of a separator impregnated with an electrolyte, from each cathode layer and from each anode current-collecting substrate layer.