Polymers of isoprene from renewable resources

    公开(公告)号:US20110237769A1

    公开(公告)日:2011-09-29

    申请号:US12459399

    申请日:2009-06-30

    摘要: It has been found that certain cells in culture can convert more than about 0.002 percent of the carbon available in the cell culture medium into isoprene. These cells have a heterologous nucleic acid that (i) encodes an isoprene synthase polypeptide and (ii) is operably linked to a promoter. In some cases, these cells are cultured in a culture medium that includes a carbon source, such as, but not limited to, a carbohydrate, glycerol, glycerine, dihydroxyacetone, one-carbon source, oil, animal fat, animal oil, fatty acid, lipid, phospholipid, glycerolipid, monoglyceride, diglyceride, triglyceride, renewable carbon source, polypeptide (e.g., a microbial or plant protein or peptide), yeast extract, component from a yeast extract, or any combination of two or more of the foregoing. The isoprene produced in such a cultured medium can then be recovered and polymerized into synthetic rubbers and other useful polymeric materials. It is anticipated that there will be a significant demand for synthetic rubber and other isoprene containing polymers that are synthesized using isoprene of this type which is made from renewable, non-petrochemical based resources. In fact, it is believed that industrial customers and consumers would prefer to purchase isoprene containing polymers that are derived from such environmentally friendly sources to those that are made with isoprene derived from a petrochemical process. It is further believed that customers would be willing to pay premium prices for such environmentally friendly products that are made with renewable resources. However, it is important to be able to verify that such isoprene containing polymers are actually made from non-petrochemical based resources. The synthetic isoprene containing polymers of this invention offer the benefit of being verifiable as to being derived from non-petrochemical based resources. They can also be analytically distinguished from rubbers that come from natural sources. The present invention more specifically discloses a polyisoprene polymer which is comprised of repeat units that are derived from isoprene monomer, wherein the polyisoprene polymer has δ13C value of greater than −22‰. This type of polyisoprene can be a cis-1,4-polyisoprene homopolymer rubber.