Abstract:
A sampling system that contains filter components for collecting and concentrating vapor and particles in high-volume flows. The sample is then vaporized and delivered to a detector at a low-volume flow. The invention also has a sampling probe that contains an air-jet to help dislodge particles from surfaces and a heating lamp to help vaporize compounds on surfaces or objects. The sampling system is especially useful for screening for explosives and other illicit chemicals and toxins on people, baggage, cargo, and other objects.
Abstract:
A detector system that contains two inlet port coupled to a photoionization chamber. One inlet port allows for the introduction of a test sample. The test sample may contain contaminants, drugs, explosive, etc. that are to be detected. The other port allows for the simultaneous introduction of a standard sample. The standard sample can be used to calibrate and/or diagnose the detector system. Simultaneous introduction of the standard sample provides for real time calibration/diagnostics of the detector during detection of trace molecules in the test sample. The photoizonizer ionizes the samples which are then directed into a mass detector for detection of trace molecules. The detector system may also include inlet embodiments that allow for vaporization of liquid samples introduced to a low pressure photoionizer.
Abstract:
A detector that may contain a glow discharge ionizer and a photo-ionizer. The existence of both ionizers may increase the accuracy and number of chemical compounds that can be simultaneously monitored for chemical screening applications. The detector is particularly useful for screening explosives, chemical agents, and other illicit chemicals.
Abstract:
A detector system that can analyze multiple samples with a single detector. The detector may contain a portal with a first opening and a second opening. A first sample is obtained from the first opening and a second sample is obtained from the second opening. The openings are coupled to a single detector that can analyze both samples.
Abstract:
A detector system that contains two inlet port coupled to a photoionization chamber. One inlet port allows for the introduction of a test sample. The test sample may contain contaminants, drugs, explosive, etc. that are to be detected. The other port allows for the simultaneous introduction of a standard sample. The standard sample can be used to calibrate and/or diagnose the detector system. Simultaneous introduction of the standard sample provides for real time calibration/diagnostics of the detector during detection of trace molecules in the test sample. The photoizonizer ionizes the samples which are then directed into a mass detector for detection of trace molecules. The detector system may also include inlet embodiments that allow for vaporization of liquid samples introduced to a low pressure photoionizer.
Abstract:
A monitor that photo-ionizes trace constituents within a quadrupole ion trap (QIT). The QIT may have a valve that discharges a gas specimen into a trap chamber or a gas line that continuously discharges a gas specimen into the QIT. The trap chamber is surrounded by a ring, and an extractor plate that has an orifice. The trace molecules within the air may be ionized at the nozzle of the valve by a photo-ionizer. Photo-ionizing at the valve nozzle provides a relatively high density of ionized molecules. The photo-ionizer may be either a pulsed light source or a continuous wave light source. The trace molecules are preferably ionized with energy between 8.0 and 11.0 electron volts (eV). The energy is selected to ionize the trace molecules without fragmenting the trace constituents. A radio frequency or other oscillating frequency voltage potential is applied to the ring to trap the ionized trace molecules within the trap chamber. A voltage pulse is applied to the extractor plate to pull the ionized molecules out of the chamber and through the orifice. The extracted ionized molecules are then accelerated to a detector. The monitor has a time of flight analyzer to measure the mass of the trace constituents in the specimen.
Abstract:
A detector system for detecting trace molecules. The detector includes an ion trap that is coupled to an ionizer and a detector. The system also includes a controller that can generate voltage potentials within the ion trap. The controller can generate a voltage waveform to isolate one or more ions within the ion trap. The controller can then generate a voltage to dissociate the isolated ion(s). The controller can vary the dissociating voltage to dissociate and detect different ions. For example, the controller may vary the amplitude of the voltage to dissociate a target ion. Other techniques are described which generally improve the speed of detecting different target ions.