Abstract:
A display apparatus includes: a display panel which displays an image based on a display mode; a data driver which provides data signals to the display panel; a gate driver which starts an operation thereof in response to a start signal, and comprises stages and at least two dummy stages, where the stages sequentially provides gate signals to the display panel; and a timing controller which selects a signal from the start signal and a reset signal based on the display mode and outputs the selected signal selected to the at least two dummy stages, where each stage receives a clock signal, a previous carry signal from a previous stage, a first subsequent carry signal from a first subsequent stage and a second subsequent carry signal from a second subsequent stage, and outputs a corresponding gate signal of the gate signals and a carry signal.
Abstract:
A semiconductor device is provided as follows. A first buffer layer is disposed on a substrate including NMOS and PMOS regions. A first drain and a first source are disposed on the first buffer layer and have heterogeneous structures. A first channel is disposed between the first drain and the first source. A first gate electrode is disposed on the first channel. A second drain and a second source are disposed on the first buffer layer. A second channel is disposed between the second drain and the second source. The second channel includes a different material from the first channel. A second gate electrode is disposed on the second channel. The first drain, the first source, the first channel and the first gate electrode are disposed in the NMOS region. The second drain, the second source, the second channel and the second gate electrode are disposed in the PMOS region.
Abstract:
A display apparatus includes gate lines, data lines insulated from the gate lines while crossing the gate lines, and pixels each including sub-pixels in two successive rows by three successive columns. Among the sub-pixels in the two rows by the three columns, the sub-pixels in one of the three columns are respectively connected to a pair of different gate lines among three gate lines, and the sub-pixels in a different one of the three columns are connected to a remaining gate line among the three gate lines. The sub-pixels in the one and the different one of the three columns includes the same color filter and are applied with a gate signal transmitted in the same direction along pixel rows.
Abstract:
A driving circuit includes a plurality of stages driven in response to a start signal. Each normal stage outputs a gate signal and a carry signal, increases an electric potential of a node in response to a previous carry signal of a previous stage, and decreases the gate signal to a first voltage in response to a carry signal from a next stage. Each stage applies a second voltage lower than the first voltage to the node in response to receipt of a carry signal from a second next stage. A first dummy stage outputs a first dummy carry signal to the last two normal stages in response to a last carry signal from the last normal stage and the start signal, and a second dummy stage outputs a second dummy carry signal to the last normal stage in response to the first dummy carry signal and the start signal.
Abstract:
The present invention relates to a compressor for sucking, compressing and discharging a refrigerant gas from the external refrigerant circuit. The compressor includes: a suction muffler chamber having a suction port formed on the outer circumference of a cylinder block, which has a plurality of bores arranged in a line, and an oil storing part for storing oil, the suction port being communicated with the external refrigerant circuit; and a rear housing connected to the cylinder block to close the rear end of the cylinder block and having a suction chamber and a discharge chamber therein, the rear housing having a suction chamber communicating passage for communicating the suction chamber with the suction muffler chamber at the upstream part of the suction chamber. The compressor can effectively reduce a pressure pulsation of the suction gas and a noise due to the pressure pulsation without causing an increase of the overall length and the entire volume of the compressor, improve lubrication at the time of an initial start, and increase suction and compression efficiencies.
Abstract:
A semiconductor device is provided as follows. A substrate includes an NMOS region and a PMOS region. A first trench and a second trench are disposed in the NMOS region. A first buffer layer is disposed in the first trench and the second trench. A stressor is disposed in the first trench and the second trench and disposed on the first buffer layer. A first channel region is disposed between the first trench and the second trench and disposed in the substrate. A first gate electrode is disposed on the first channel area. A third trench is disposed in the PMOS region. A second buffer layer is disposed in the third trench. A second channel area is disposed in the third trench, disposed on the second buffer layer, and has a different semiconductor layer from the substrate. A second gate electrode is disposed on the second channel area.
Abstract:
Semiconductor memory devices may include a write transistor including a first write gate controlling a first source/drain terminal and a second write gate controlling a channel region, and a read transistor including a memory node gate connected to the first source/drain terminal of the write transistor. The first write gate may have a first work function and the second write gate may have a second work function different from the first work function. The first source/drain terminal of the write transistor may not have a PN junction.
Abstract:
Semiconductor memory devices may include a write transistor including a first write gate controlling a first source/drain terminal and a second write gate controlling a channel region, and a read transistor including a memory node gate connected to the first source/drain terminal of the write transistor. The first write gate may have a first work function and the second write gate may have a second work function different from the first work function. The first source/drain terminal of the write transistor may not have a PN junction.
Abstract:
A display apparatus includes gate lines, data lines insulated from the gate lines while crossing the gate lines, and pixels each including sub-pixels in two successive rows by three successive columns. Among the sub-pixels in the two rows by the three columns, the sub-pixels in one of the three columns are respectively connected to a pair of different gate lines among three gate lines, and the sub-pixels in a different one of the three columns are connected to a remaining gate line among the three gate lines. The sub-pixels in the one and the different one of the three columns includes the same color filter and are applied with a gate signal transmitted in the same direction along pixel rows.
Abstract:
A driving circuit includes a plurality of stages driven in response to a start signal. Each normal stage outputs a gate signal and a carry signal, increases an electric potential of a node in response to a previous carry signal of a previous stage, and decreases the gate signal to a first voltage in response to a carry signal from a next stage. Each stage applies a second voltage lower than the first voltage to the node in response to receipt of a carry signal from a second next stage. A first dummy stage outputs a first dummy carry signal to the last two normal stages in response to a last carry signal from the last normal stage and the start signal, and a second dummy stage outputs a second dummy carry signal to the last normal stage in response to the first dummy carry signal and the start signal.