Abstract:
A power drive system is adapted for a sliding door mounted on at least one side of a vehicle for sliding movement forwardly and rearwardly of the vehicle. The system includes a reversible motor. A bracket is guided within a guide along a fixed path between the opened and closed positions of the door. An elongated drive member is slidably disposed within the guide and connected to the bracket at one end for driving the bracket along the fixed path. A translator mechanism operably engages with the drive member for powering movement of the door. The translator mechanism can include a rotatable hub, operably engageable with the drive member, a gear transmission for driving the hub, and a clutch mechanism for connecting the motor to the transmission. The translator mechanism preferably has sufficient power to pull the sliding door into a primary latch position with respect to the corresponding portions of a latch mechanism attached to the door and frame defining the door opening. A power striker moves the door into and out of sealing engagement with the frame. A lock mechanism selectively maintains the latch in a locked position. At least one sensor provides an input signal to a control system corresponding to movement of the door, position of the lock mechanism, and position of the power striker for controlling the door drive unit, power striker drive unit, and lock mechanism drive unit in accordance with a program stored in memory.
Abstract:
A power drive system is adapted for a sliding door mounted on at least one side of a vehicle for sliding movement forwardly and rearwardly of the vehicle. The system includes a reversible motor. A bracket is guided within a guide along a fixed path between the opened and closed positions of the door. An elongated drive member is slidably disposed within the guide and connected to the bracket at one end for driving the bracket along the fixed path. A translator mechanism operably engages with the drive member for powering movement of the door. The translator mechanism can include a rotatable hub, operably engageable with the drive member, a gear transmission for driving the hub, and a clutch mechanism for connecting the motor to the transmission. The translator mechanism preferably has sufficient power to pull the sliding door into a primary latch position with respect to the corresponding portions of a latch mechanism attached to the door and frame defining the door opening. A power striker moves the door into and out of sealing engagement with the frame. A lock mechanism selectively maintains the latch in a locked position. At least one sensor provides an input signal to a control system corresponding to movement of the door, position of the lock mechanism, and position of the power striker for controlling the door drive unit, power striker drive unit, and lock mechanism drive unit in accordance with a program stored in memory.
Abstract:
A power drive system is adapted for a sliding door mounted on at least one side of a vehicle for sliding movement forwardly and rearwardly of the vehicle. The system includes a reversible motor. A bracket is guided within a guide along a fixed path between the opened and closed positions of the door. An elongated drive member is slidably disposed within the guide and connected to the bracket at one end for driving the bracket along the fixed path. A translator mechanism operably engages with the drive member for powering movement of the door. The translator mechanism can include a rotatable hub, operably engageable with the drive member, a gear transmission for driving the hub, and a clutch mechanism for connecting the motor to the transmission. The translator mechanism preferably has sufficient power to pull the sliding door into a primary latch position with respect to the corresponding portions of a latch mechanism attached to the door and frame defining the door opening. A power striker moves the door into and out of sealing engagement with the frame. A lock mechanism selectively maintains the latch in a locked position. At least one sensor provides an input signal to a control system corresponding to movement of the door, position of the lock mechanism, and position of the power striker for controlling the door drive unit, power striker drive unit, and lock mechanism drive unit in accordance with a program stored in memory.
Abstract:
An assembly (10) for sensing moisture (20) on the exterior surface (22) of a windshield (14) from a position spaced from the interior surface (18) of the windshield (14). The assembly (10) includes a focal plane detector (12) comprising a plurality of pixels (24) adapted for disposition in spaced relationship to the interior surface (18) of the sheet of glass (14). An imaging lens (16) is adapted for disposition between the focal plane detector (12) and the interior surface (18) of the sheet of glass (14) for directing light waves from moisture (20) on the exterior surface (22) of the sheet of glass (14) through the imaging lens (16) to produce successive images of the moisture (20) on the focal plane detector (12).
Abstract:
An optical moisture detector for determining a value corresponding to ambient light conditions and comparing that value to a predetermined value. The detector includes an optical moisture sensor and a processor. The optical moisture sensor can be a photo array, a CCD or a CMOS. The processor can be a microprocessor. The processor can emit a control signal to engage or disengage a light generating device based on the result of the comparison of the value to the predetermined value.