摘要:
The present invention provides devices and methods for Raman amplification and dispersion compensation. According to one embodiment of the present invention, a dispersion compensating device includes a dispersion compensating fiber having a dispersion more negative than about −50 ps/nm/km over a wavelength range of about 1555 nm to about 1615 nm; a Raman gain fiber having a dispersion more positive than about −40 ps/nm/km over a wavelength range of about 1555 nm to about 1615 nm; and a pump source operatively coupled to the dispersion compensating fiber and the Raman gain fiber, the pump source operating at a pump wavelength, wherein the dispersion compensating fiber has a Raman Figure of Merit at the pump wavelength, and wherein the Raman gain fiber has a Raman Figure of Merit at least about equivalent to the Raman Figure of Merit of the dispersion compensating fiber, and wherein the dispersion compensating fiber and the Raman gain fiber are arranged in series between the input and the output of the device. The device provides higher Raman gain than a conventional Raman-pumped dispersion compensating device.
摘要:
The present invention provides devices and methods for Raman amplification and dispersion compensation. According to one embodiment of the present invention, a dispersion compensating device includes a dispersion compensating fiber having a dispersion more negative than about −50 ps/nm/km over a wavelength range of about 1555 nm to about 1615 nm; a Raman gain fiber having a dispersion more positive than about −40 ps/nm/km over a wavelength range of about 1555 nm to about 1615 nm; and a pump source operatively coupled to the dispersion compensating fiber and the Raman gain fiber, the pump source operating at a pump wavelength, wherein the dispersion compensating fiber has a Raman Figure of Merit at the pump wavelength, and wherein the Raman gain fiber has a Raman Figure of Merit at least about equivalent to the Raman Figure of Merit of the dispersion compensating fiber, and wherein the dispersion compensating fiber and the Raman gain fiber are arranged in series between the input and the output of the device. The device provides higher Raman gain than a conventional Raman-pumped dispersion compensating device.
摘要:
Disclosed is a single mode optical waveguide fiber having a low cut off wavelength, and mode field diameter and bend resistance similar to step index single mode optical waveguide fiber designed for use at 1310 nm. By including a clad region of raised refractive index spaced apart from the core region of the single mode optical waveguide fiber, the cut off wavelength can be reduced to 850 nm. The single mode optical waveguide fiber in accord with the invention may also have a core region having a reduced refractive index on centerline surrounded by a region of higher refractive index and a clad region which is substantially uniform. The single mode optical waveguide fiber is thus ideally suited for use with the low cost, reliable VCSEL operating at 850 nm, a Fabry-Perot laser operating at 1310 nm, or a distributed feedback laser operating at 1550 nm thereby enabling low cost, easily installed, home access portions of the broadband telecommunications system.
摘要:
An optically-active air-clad fiber (30) includes a core (34, 84) that facilitates doping with an ion optically excitable and having a three-level optical transition when pumped at a first end (28) of an optical cavity (46) by a multimode pump source (72) at a pump wavelength (64) for lasing at a signal wavelength (66) different than the pump wavelength (64) at a second end (29) of the optical cavity (46), the core (34, 84) having a refractive index, wherein the core (34, 84) is transformed from the first end to proximate the second end (29) thereof such that the optically-active fiber (30) is multimode at the pump wavelength proximate to the first end (28), and is single-mode at the signal wavelength proximate to the second end (29). An air-clad (36, 86) surrounds at least one portion of the core (34, 84) and has a lower effective refractive index than the refractive index of the core (34, 84).
摘要:
An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen-18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
摘要翻译:提供了一种同位素改性的二氧化硅基光纤,其比传统的二氧化硅基光纤具有更低的损耗,更宽的带宽和更广泛的拉曼增益光谱特性。 更重,更不自然丰富的硅或氧的同位素代替较轻的,更自然的丰富的同位素,以将红外吸收转移到稍长的波长。 在一个实施方案中,氧-18至少在纤维的核心区域中替代天然丰富的氧-16。 所得到的同位素改变的光纤比常规光纤的损耗最小为0.044 dB / km,对于0.044-0.034 dB / km之间的损耗范围,宽带宽为17%。 纤维可以通过等离子体化学气相沉积技术容易地用常规纤维制造设备制造。 当在纤维的纤芯区域中进行氧-16取代氧-16的50%时,拉曼增益谱显着扩大。
摘要:
The present invention provides devices and methods for Raman amplification and dispersion compensation. According to one embodiment of the present invention, a dispersion compensating device includes a dispersion compensating fiber having a dispersion more negative than about −50 ps/nm/km over a wavelength range of about 1555 nm to about 1615 nm; a Raman gain fiber having a dispersion more positive than about −40 ps/nm/km over a wavelength range of about 1555 nm to about 1615 nm; and a pump source operatively coupled to the dispersion compensating fiber and the Raman gain fiber, the pump source operating at a pump wavelength, wherein the dispersion compensating fiber has a Raman Figure of Merit at the pump wavelength, and wherein the Raman gain fiber has a Raman Figure of Merit at least about equivalent to the Raman Figure of Merit of the dispersion compensating fiber, and wherein the dispersion compensating fiber and the Raman gain fiber are arranged in series between the input and the output of the device. The device provides higher Raman gain than a conventional Raman-pumped dispersion compensating device.
摘要:
A fiber optic waveguide is disclosed. The fiber optic waveguide includes a core region, and a moat region surrounding the core region. A cladding region surrounds the moat region and the core region. The cladding region includes a lattice of column structures disposed within a solid background matrix. A diameter of the core region is sized for making contact with the moat region for creating an extended core region at longer wavelengths. The core region, the moat region, and the cladding region function to produce unique dispersion compensating properties, which include negative dispersion and positive dispersion. The core region may be formed from a high index material and the moat region may be formed from a material having a refractive index lower than the refractive index of the core region. The cladding region is formed from a material having a refractive index which is higher than the index of the moat region and lower than the refractive index of core region.
摘要:
The present invention relates to a microstructured optical fiber including a photonic band gap-guided core; and at least one index-guided core. Another embodiment of the present invention relates to a microstructured optical fiber including a set of main cores; a microstructured region surrounding the set of main cores; and at least alignment core, the alignment cores having substantially different optical propagation properties than the main cores. The present invention also includes methods for coupling, monitoring, and locating discontinuities in the fibers of the present invention.
摘要:
A microstructured optical fiber is described. The microstructured optical fiber comprises an inner region and an outer region. The inner region includes an inner material and a plurality of holes formed in the inner material. The outer region surrounds the inner region, and includes an outer material. The softening point temperature of the inner material is greater than the softening point temperature of the outer material by at least about 50° C. Microstructured optical fiber preforms and methods for making the microstructured optical fibers are also described. The microstructured optical fiber may be made to have substantially undistorted holes in the inner region.
摘要:
Disclosed is a photonic band-gap crystal waveguide having the physical dimension of the photonic crystal lattice and the size of the defect selected to provide for optimum mode power confinement to the defect. The defect has a boundary which has a characteristic numerical value associated with it. The ratio of this numerical value to the pitch of the photonic crystal is selected to avoid surface modes found to exist in certain configurations of the photonic band-gap crystal waveguide. Embodiments in accord with the invention having circular and hexagonal defect cross sections are disclosed and described. A method of making the photonic band-gap crystal waveguide is also disclosed and described.