Abstract:
A pourable aqueous cement composition is disclosed. The cement composition comprises a hydraulic cement, water and a selectively removable material comprising a plurality of selectively corrodible metal powder particles dispersed within the cement or a nanomatrix powder compact, or a combination thereof. An article, including a downhole article, and more particularly a reconfigurable downhole article is disclosed. The article includes a hydraulic cement, wherein the hydraulic cement has at least partially set into a permanent form. The article also includes a selectively removable material dispersed within the cement, the selectively removable material comprising a plurality of selectively corrodible metal powder particles dispersed within the cement or a nanomatrix powder compact, or a combination thereof, wherein the selectively removable material is configured for removal in response to a predetermined wellbore condition.
Abstract:
An apparatus for controlling fluid flow into a tubular includes an in-flow control device having a plurality of flow paths; and a reactive media disposed in each of the flow paths. The reactive media may change permeability by interacting with a selected fluid such as water. Two or more of the flow paths may be hydraulically parallel. The reactive media may include a Relative Permeability Modifier. An associated method may include conveying the fluid via a plurality of flow paths; and controlling a resistance to flow in plurality of flow paths using a reactive media disposed in each of the flow paths. An associated system may include a wellbore tubular; an in-flow control device; a hydraulic circuit formed in the in-flow control device; and a reactive media disposed in the hydraulic circuit, the reactive media may change permeability by interacting with a selected fluid.
Abstract:
An apparatus for controlling fluid flow into a tubular includes an in-flow control device having a plurality of flow paths; and a reactive media disposed in each of the flow paths. The reactive media may change permeability by interacting with a selected fluid such as water. Two or more of the flow paths may be hydraulically parallel. The reactive media may include a Relative Permeability Modifier. An associated method may include conveying the fluid via a plurality of flow paths; and controlling a resistance to flow in plurality of flow paths using a reactive media disposed in each of the flow paths. An associated system may include a wellbore tubular; an in-flow control device; a hydraulic circuit formed in the in-flow control device; and a reactive media disposed in the hydraulic circuit, the reactive media may change permeability by interacting with a selected fluid.
Abstract:
Fluids viscosified with viscoelastic surfactants (VESs) may have their fluid loss properties improved with at least one mineral oil which has a viscosity greater than 20 cps at ambient temperature. The mineral oil may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. In one non-limiting embodiment, the mineral oil is added to the fluid after it has been substantially gelled in an amount between about 0.2 to about 10% by volume.
Abstract:
Viscoelastic surfactant (VES) gelled aqueous fluids containing a VES, an internal breaker, and optionally a viscosity enhancer are useful as diverting fluid for directing placement of an acid into a subterranean formation, where the acid is injected subsequent to introducing the VES gelled fluid. These VES-based diverting fluids have faster and more complete clean-up than polymer-based diverting fluids. The viscosity enhancers may include pyroelectric particles and/or piezoelectric particles. The VES gelled fluid may optionally contain a fluid loss agent which increases the viscosity of the fluid and/or facilitates development of an external viscous VES fluid layer (e.g. a pseudo-filter cake) on the formation face. The VES gelled fluid may also optionally contain an agent that stabilizes the viscosity of the fluid, for instance at high temperatures, such as MgO, Mg(OH)2, CaO, Ca(OH)2, NaOH, and the like.
Abstract:
It has been discovered that fracturing fluid compositions can be designed for successful deep water completion fracturing fluid operations. These fluids must be pumped relatively long distances from offshore platforms to the reservoir, and they are often subjected to a wide temperature range. Under these conditions, it is necessary to inhibit the formation of gas hydrates in the fracturing fluid compositions, as well as to delay the crosslinking of the gels that are formed to increase the viscosity of the fluids prior to fracturing the formation. Preferably, two different gas hydrate inhibitors are used to ensure placement of a gas hydrate inhibitor in most parts of the operation. In addition, as with all offshore or deep water hydrocarbon recovery operations, it is important that the components of the fracturing fluid compositions be environmentally benign and biodegradable.
Abstract:
An aqueous, viscoelastic fluid gelled with a viscoelastic surfactant (VES) is stabilized and improved with an effective amount of an alkali earth metal oxide and/or alkali earth metal hydroxide. These fluids are more stable and have reduced or no tendency to precipitate, particularly at elevated temperatures. The additives may also increase viscosity to the point where less VES is required to maintain a given viscosity. These stabilized, enhanced, aqueous viscoelastic fluids may be used as treatment fluids for subterranean hydrocarbon formations, such as in hydraulic fracturing.
Abstract:
Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities affected (increased or reduced) by the indirect or direct action of a composition that contains at least one fatty acid that has been affected, modified or reacted with an alkali metal halide salt, an alkaline earth metal halide salt, and/or an ammonium salt and a water soluble base. The composition containing the resulting saponification product is believed to either act as a co-surfactant with the VES itself to increase viscosity and/or possibly by disaggregating or otherwise affecting the micellar structure of the VES-gelled fluid. In a non-limiting instance, a brine fluid gelled with an amine oxide surfactant has its viscosity broken with a composition containing naturally-occurring fatty acids in canola oil reacted with a water soluble base such as NaOH, KOH, NH4OH, and the like with an alkali halide salt such as CaCl2, MgCl2, NaCl, NH4Cl and the like.
Abstract:
It has been discovered that fracturing fluid breaker mechanisms are improved by the inclusion of a polyol alone that directly degrades the polysaccharide backbone, and optionally additionally by removing the crosslinking ion, if present. That is, viscosity reduction (breaking) occurs by breaking down the chemical bonds within the backbone directly, rather than by merely removing the crosslinking ion, if presert. The gel does not have to be crosslinked for the method of the invention to be successful, although it may be crosslinked. In one non-limiting embodiment, the polyol has at least two hydroxyl groups on adjacent carbon atoms. In another embodiment, the polyols are monosaccharides such as glycerols and sugar alcohols, and may include mannitol, sorbitol, glucose, fructose, galactose, mannose, lactose, maltose, allose, etc. and mixtures thereof.
Abstract:
Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of a composition that contains at least one unsaturated fatty acid, such as a monoenoic acid and/or polyenoic acid. The unsaturated fatty acid may be contained in an oil-soluble internal phase of the fluid. The breaking composition is believed to act possibly by rearranging, disaggregating or otherwise attacking the micellar structure of the VES-gelled fluid. In a specific, non-limiting instance, a brine fluid gelled with an amine oxide surfactant can have its viscosity broken with an oil such as flax (linseed) oil, soybean oil and/or fish oils containing relatively high amounts of unsaturated fatty acids. The unsaturated fatty acids are thought to auto-oxidize into products such as aldehydes, ketones and saturated fatty acids that break the VES gel.