Abstract:
A system for performing image-based diagnosis of a machine includes a database containing a plurality of historical images taken from a plurality of machines, a diagnostic unit configured to diagnose a new artifact image from the machine and to communicate historical and non-historical images or data associated with the system to a remote facility. The plurality of historical images include a plurality of ideal images generated from the plurality of machines using all possible machine settings and a plurality of artifact images generated from the plurality of machines, each of the artifact images having known faults associated therewith and a corresponding corrective action for repairing the faults. The diagnostic unit includes a diagnostic image processor and a diagnostic fault isolator. The diagnostic image processor includes means for finding an ideal image from the plurality of historical images that most closely matches the new artifact image, means for assigning an artifact category to the new artifact image based on the matched ideal image, and means for extracting an artifact feature from the new artifact image according to the assigned category. The diagnostic fault isolator includes means for generating a plurality of metrics for the extracted artifact feature and means for applying the plurality of metrics to identify an artifact image from the plurality of historical images that most closely matches the new artifact image and a corrective action for repairing the unknown fault.
Abstract:
A method and apparatus are provided for customizing and monitoring multiple interfaces, such as, multiple IEEE 1149.1 standard joint test access group (JTAG) interfaces and implementing enhanced fault tolerance and isolation features. A first interface is connected to a pair of master sources. A second interface is connected to a plurality of target interfaces; and a third interface is provided for a plurality of predefined control signals. A pair of redundant selectors is provided for coupling a select signal to the first multiplexer for selecting one of the plurality of target interfaces. A pair of redundant ATTENTION monitor functions is provided for monitoring ATTENTION signals for each of the plurality of target interfaces
Abstract:
The invention relates to a process for making a cross-directionally worked molybdenum plate, the process comprising: (a) reducing ammonium molybdate and forming molybdenum metal powder; (b) consolidating a molybdenum component comprised of molybdenum metal powder and an alloying element to a first workpiece, the alloying element being selected from the group consisting of titanium, zirconium, hafnium, carbon, lanthanum oxide, and combinations thereof; (c) thermally treating the first workpiece and subjecting the workpiece to thermo-mechanical forces in a first direction, and thereby forming a second workpiece; (d) thermally treating the second workpiece and subjecting the second workpiece to thermo-mechanical forces in a second direction that is different from the first direction; (e) subjecting the thermomechanically treated second workpiece to a recrystallization heat treatment step, and thereby forming a heat-treated crossdirectionally worked workpiece; and (f) subjecting the heat-treated, cross-directionally worked workpiece to a slicing step or a machining step, and thereby forming the cross-directionally worked molybdenum plate. The invention also relates to X-ray targets made from the process.
Abstract:
Molybdenum, sputtering targets and sintering characterized as having no or minimal texture banding or through thickness gradient. The molybdenum sputtering targets having a fine, uniform grain size as well as uniform texture, are high purity and can be micro-alloyed to improved performance. The sputtering targets can be round discs, square, rectangular or tubular and can be sputtered to form thin films on substrates. By using a segment-forming method, the size of the sputtering target can be up to 6 m×5.5 m. The thin films can be used in electronic components such as Thin Film Transistor—Liquid Crystal Displays, Plasma Display Panels, Organic Light Emitting Diodes, Inorganic Light Emitting Diode Displays, Field Emission Displays, solar cells, sensors, semiconductor devices, and gate device for CMOS (complementary metal oxide semiconductor) with tunable work functions.