Abstract:
Methods, systems, and apparatus for plating a metal onto a work piece with a plating solution having a low oxygen concentration are described. In one aspect, a method includes reducing an oxygen concentration of a plating solution. The plating solution includes about 100 parts per million or less of an accelerator. After reducing the oxygen concentration of the plating solution, a wafer substrate is contacted with the plating solution in a plating cell. The oxygen concentration of the plating solution in the plating cell is about 1 part per million or less. A metal is electroplated with the plating solution onto the wafer substrate in the plating cell. After electroplating the metal onto the wafer substrate, an oxidizing strength of the plating solution is increased.
Abstract:
A yarn heating element wherein fixed elongated core having a heater therein serves as a support for a sleeve rotatably mounted to and telescoped over the core. The space between the core and sleeve can be varied along their lengths for controlling heat radiated from the core to the shell to control the temperature profile along the length of the shell. Varying the winding density of the heater can serve the same purpose.
Abstract:
Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
Abstract:
A process and apparatus for drawing polyamide yarn in which the yarn having a lubricating finish is drawn while being spirally advanced in frictional contact with the outer surface of a yarn draw assist element. In such process and apparatus, the outer surface of the draw assist element moves at a speed at least 100 times slower than the speed at which the yarn is advanced. From the draw assist element, the yarn directly advances to a roll initial contact location on a pair of space-apart heated rolls and spirally advances on the rolls through at least one wrap in contact with the outwardly-facing surfaces of the heated rolls. The distance that the yarn spirally advances longitudinally in the wrap can be said to define the wrap advance on the rolls. The roll initial contact location of the heated rolls is oscillated by moving the outer surface of the draw assist element in relation to the pair of heated rolls to oscillate the wrap on the rolls a distance which is at least equal to the wrap advance. The process and apparatus advantageously prevent the build-up of deposits on the heated rolls.
Abstract:
A flat, hollow, vertically elongated door panel has an open bottom. A movable piece is located inside the panel and can move up or down through the bottom. Horizontal bottom pieces are attached to the movable piece and both the bottom and movable pieces are spring-loaded downwardly.
Abstract:
Methods, systems, and apparatus for plating a metal onto a work piece with a plating solution having a low oxygen concentration are described. In one aspect, a method includes reducing an oxygen concentration of a plating solution. The plating solution includes about 100 parts per million or less of an accelerator. After reducing the oxygen concentration of the plating solution, a wafer substrate is contacted with the plating solution in a plating cell. The oxygen concentration of the plating solution in the plating cell is about 1 part per million or less. A metal is electroplated with the plating solution onto the wafer substrate in the plating cell. After electroplating the metal onto the wafer substrate, an oxidizing strength of the plating solution is increased.