摘要:
The present invention relates to a device and method for determining the presence of a specific compound in solution. The device includes a nanosensor having an electrically conducting pathway between at least a first and second contact. The device also includes a first receptor, suitable for binding a specific compound in the solution, attached to the nanosensor, and a second receptor also suitable for binding the specific compound while the specific compound is bound to the first receptor. The second receptor is attached to an enzyme added to the solution. When the solution having the second receptor is added to the device, and a second compound that is a substrate for the enzyme is subsequently added to the solution, a measured difference in an electrical property in the device before and after the application of the second compound is indicative of the presence of the specific compound in the solution.
摘要:
The systems and methods described herein include a sensor for suitable for sensing chemical and biological substances. The sensor comprises a semiconductor layer formed in or on a substrate and a channel having nano-scale dimensions formed in the semiconductor layer, where the structure creates an electrically conducting pathway between a first contact and a second contact on the semiconductor layer. In certain preferred embodiments, the nano-scale channel has a trapezoidal cross-section with an effective width and exposed lateral faces, where the effective width is selected to have same order of magnitude as a Debye length (LD) of the semiconductor material of which the semiconductor layer is formed.
摘要:
The present invention relates to ionic electrodes, particularly microelectrodes and electrode arrays, and also relates to fabrication methods for such electrodes. In particular, the present invention relates to planar polymer electrodes for making patch clamp measurements of ionic currents through biological membranes, such as the plasma membranes of living cells. The electrodes of the present invention are useful for measuring individual and multisite cell membrane currents and voltages, as well as in high-throughput screening procedures.
摘要:
The systems and methods described herein include a sensor for suitable for sensing chemical and biological substances. The sensor comprises a semiconductor layer formed in or on a substrate and a channel having nano-scale dimensions formed in the semiconductor layer, where the structure creates an electrically conducting pathway between a first contact and a second contact on the semiconductor layer. In certain preferred embodiments, the nano-scale channel has a trapezoidal cross-section with an effective width and exposed lateral faces, where the effective width is selected to have same order of magnitude as a Debye length (LD) of the semiconductor material of which the semiconductor layer is formed.