Abstract:
An igniter for an internal combustion engine is disclosed. The igniter may have a base, and a cap fixedly connected to the base to form an integral pre-combustion chamber. The cap may have at least one orifice. The igniter may also have an electrode extending through the base and at least partially into the integral pre-combustion chamber. The electrode may be configured to direct current having a voltage component in the RF range into the integral pre-combustion chamber.
Abstract:
An igniter for an internal combustion engine is disclosed. The igniter may have a body, and a pre-combustion chamber integral with the body and having at least one orifice. The igniter may also have at least one electrode extending into the pre-combustion chamber. The at least one electrode may be configured to direct an arc to an annular side wall of the pre-combustion chamber, and may be movable to adjust an arc termination location on the annular side wall of the pre-combustion chamber.
Abstract:
An ignition system for an engine includes an igniter configured to selectively ignite a fuel mixture within the engine, an ignition coil associated with the igniter, and a controller in communication with the ignition coil. The controller is configured to energize the ignition coil during a first ignition sequence until a threshold current has been directed to the ignition coil, measure a rise time associated with reaching the threshold current, and calculate a desired ignition duration based on the rise time and a time margin. The controller is also configured to energize the ignition coil during a second ignition sequence, the second ignition sequence lasting for the desired ignition duration.
Abstract:
An igniter for an internal combustion engine is disclosed. The igniter may have a body, and a pre-combustion chamber integral with the body and having at least one orifice. The igniter may further have a focusing device configured to direct at least one beam of light energy into the pre-combustion chamber.
Abstract:
An igniter for an internal combustion engine is disclosed. The igniter may have a body, and a pre-combustion chamber integral with the body and having at least one orifice. The igniter may also have at least one electrode associated with the pre-combustion chamber. The at least one electrode may be configured to direct RF energy to lower an ignition breakdown voltage requirement of an air and fuel mixture in the pre-combustion chamber. The RF energy alone may be insufficient to ignite and sustain combustion of the air and fuel mixture. The at least one electrode may also be configured to generate an arc that extends to an internal wall of the pre-combustion chamber and ignites the air and fuel mixture.
Abstract:
An igniter for an internal combustion engine is disclosed. The igniter may have a body, and a pre-combustion chamber integral with the body and having at least one orifice. The igniter may further have a focusing device configured to direct at least one beam of light energy into the pre-combustion chamber.
Abstract:
An igniter for an internal combustion engine is disclosed. The igniter may have a body, and a pre-combustion chamber integral with the body and having at least one orifice. The igniter may also have at least one electrode associated with the pre-combustion chamber. The at least one electrode may be configured to direct RF energy to lower an ignition breakdown voltage requirement of an air and fuel mixture in the pre-combustion chamber. The RF energy alone may be insufficient to ignite and sustain combustion of the air and fuel mixture. The at least one electrode may also be configured to generate an arc that extends to an internal wall of the pre-combustion chamber and ignites the air and fuel mixture.
Abstract:
A spark ignition system and spark plug for utilization in an internal combustion engine combusting an ultra lean fuel/air mixture has capacitors and rectifiers built within the spark plug and the system is constructed to be compact and capable of delivering a controlled spark that has the physical properties of providing a very fast, high power pulse or train of pulses greater than conventional spark plugs.
Abstract:
A spark ignition system and spark plug for utilization in an internal combustion engine combusting an ultra lean fuel/air mixture has capacitors and rectifiers built within the spark plug and the system is constructed to be compact and capable of delivering a controlled spark that has the physical properties of providing a very fast, high power pulse or train of pulses greater than conventional spark plugs.
Abstract:
An igniter for an internal combustion engine is disclosed. The igniter may have a body, and a pre-combustion chamber integral with the body and having at least one orifice. The igniter may also have at least one electrode extending into the pre-combustion chamber. The at least one electrode may be configured to direct an arc to an annular side wall of the pre-combustion chamber, and may be movable to adjust an arc termination location on the annular side wall of the pre-combustion chamber.