Abstract:
An improved probabilistic lane assignment method for detected objects in the scene forward of a host vehicle. Road/lane model parameters, preferably including an angular orientation of the host vehicle in its lane, are estimated from host vehicle sensor systems, taking into account measurement uncertainty in each of the constituent parameters. A probabilistic assignment of the object's lane is then assessed based on the road/lane model parameters and object measurements, again taking into account measurement uncertainty in both the road/lane model and object measurements. According to a first embodiment, the probabilistic assignment is discrete in nature, indicating a confidence or degree-of-belief that the detected object resides in each of a number of lanes. According to a second embodiment, the probabilistic assignment is continuous in nature, providing a lateral separation distance between the host vehicle and the object, and a confidence or degree-of-belief in the lateral separation distance.
Abstract:
A collision detection system and method of estimating a crossing location are provided. The system includes a first sensor for sensing an object in a field of view and sensing a first range defined as the distance between the object and the first sensor. The system also includes a second sensor for sensing the object in the field of view and sensing a second range defined by the distance between the object and the second sensor. The system further includes a controller for processing the first and second range measurements and estimating a crossing location of the object as a function of the first and second range measurements. The crossing location is estimated using range and range rate in a W-plane in one embodiment and using a time domain approach in another embodiment.
Abstract:
A collision detection system and method of estimating a miss distance are provided. The collision detection system includes a sensor for sensing an object in a field of view. The sensor measures range and range rate of the object. The collision detection system further includes a controller for estimating a miss distance as a function of the measured range and range rate, without requiring a measured azimuth angle measurement.
Abstract:
An attitude angle estimator and method of estimating attitude angle of a vehicle having an angular attitude rate sensor sensing angular attitude rate of a vehicle, a vertical accelerometer sensing vertical acceleration, and a lateral accelerometer sensing lateral acceleration. An attitude angle estimate is produced and is updated as a function of the sensed angular attitude rate. An acceleration-based attitude angle is determined as a function of the sensed accelerations, and a blending coefficient is provided. A current vehicle attitude angle estimate is generated as a function of the updated attitude angle estimate, the acceleration-based attitude angle, and the blending coefficient.
Abstract:
An improved probabilistic lane assignment method for detected objects in the scene forward of a host vehicle. Road/lane model parameters, preferably including an angular orientation of the host vehicle in its lane, are estimated from host vehicle sensor systems, taking into account measurement uncertainty in each of the constituent parameters. A probabilistic assignment of the object's lane is then assessed based on the road/lane model parameters and object measurements, again taking into account measurement uncertainty in both the road/lane model and object measurements. According to a first embodiment, the probabilistic assignment is discrete in nature, indicating a confidence or degree-of-belief that the detected object resides in each of a number of lanes. According to a second embodiment, the probabilistic assignment is continuous in nature, providing a lateral separation distance between the host vehicle and the object, and a confidence or degree-of-belief in the lateral separation distance.
Abstract:
A rollover detection apparatus and method are provided for anticipating a potential vehicle rollover event. The apparatus includes an input for receiving a plurality of input signals including sensed parameters of the vehicle. A first memory buffer stores data representative of one or more predetermined driving scenarios that represent possible rollover scenarios. A second memory buffer stores data representative of a history of recent conditions of the vehicle based on the plurality of sensed vehicle parameters. The apparatus further includes a processor for comparing the data representative of a history of recent driving events to the data representative of one or more predetermined driving scenarios. The processor further determines a possible rollover event of the vehicle based on the comparison and generates an output signal indicative thereof.
Abstract:
A vehicle rollover detection apparatus and method are provided for detecting an overturn condition of the vehicle. The rollover detection apparatus includes an angular rate sensor sensing angular rate of the vehicle, and a vertical accelerometer for sensing vertical acceleration of the vehicle. A controller processes the sensed angular rate signal and integrates it to produce an attitude angle. The vertical acceleration signal is processed to determine an inclination angle of the vehicle. The rollover detection apparatus adjusts the attitude angle as a function of the inclination angle and compares the adjusted attitude angle and the processed angular rate signal to a threshold level to provide a vehicle overturn condition output signal. Additionally, the rollover detection apparatus detects a near-rollover event and adjusts the variable threshold in response thereto to prevent deployment of a vehicle overturn condition, thus providing immunity to such events.
Abstract:
A method of lane marker detection and lane fitting is provided for lane tracking. A lane marker is modeled and split into left and right steps. A filter response is calculated from a cumulative row sum, and normalized for filter pixel size, lane marker brightness and road brightness. A lane marker response is peak detected for positive and negative peaks and checked for having a magnitude above a threshold and being a local peak in a five point neighborhood. A Hough transform is extended to multiple planes to use lane marker features to determine a best line. Lane marker features include a mean and variance of lane marker brightness, lane marker width, lane marker parallelism to a host vehicle direction of travel, and consistence with a predicted lane marker characteristic. A closest lane marker line to a host vehicle is identified, and refitted to account for any curvature.
Abstract:
A collision detection system and method of estimating a crossing location are provided. The system includes a first sensor for sensing an object in a field of view and sensing a first range defined as the distance between the object and the first sensor. The system also includes a second sensor for sensing the object in the field of view and sensing a second range defined by the distance between the object and the second sensor. The system further includes a controller for processing the first and second range measurements and estimating a crossing location of the object as a function of the first and second range measurements. The crossing location is estimated using range and range rate in a W-plane in one embodiment and using a time domain approach in another embodiment.
Abstract:
A method of lane marker detection and detection fitting is provided for lane tracking. A lane marker is modeled and split into left and right steps. A filter response is calculated from a cumulative row sum, and normalized for filter pixel size, lane marker brightness and road brightness. A lane marker response is peak detected for positive and negative peaks and checked for having a magnitude above a threshold and being a local peak in a five point neighborhood. A Hough transform is extended to multiple planes to use lane marker features to determine a best line. Lane marker features include a mean and variance of lane marker brightness, lane marker width, lane marker parallelism to a host vehicle direction of travel, and consistence with a predicted lane marker characteristic. A closest lane marker line to a host vehicle is identified, and refitted to account for any curvature.