Abstract:
A thermal sensor at the output of a switching amplifier senses heat dissipation at the output switch. If an overheating condition is sensed, gain of the digital input signal is lowered to reduce output power of the audio output signal.
Abstract:
A thermal sensor at the output of a switching amplifier senses heat dissipation at the output switch. If an overheating condition is sensed, gain of the digital input signal is lowered to reduce output power of the audio output signal.
Abstract:
A quasi-differential power amplifier and method are disclosed that enhance drive capability and dynamic range by driving a right, left and common terminals with a right channel output signal, a left channel output signal, and a common mode output signal that are each a combination of the left and right channel input signals. In addition, the common mode output signal may be used as feedback so that the left and right channel output signals so that these signals are dependent upon feedback from the common mode output signal. The quasi-differential power amplifier may include a first amplifier driving the left channel output signal, a second amplifier driving the right channel output signal, and a third amplifier driving the common mode output signal. In one application, the quasi-differential amplifier may be used to drive three-wire stereo headphones for use in small portable stereo systems.
Abstract:
A gain control at the input monitors an input signal and a supply voltage, which drives an output. The gain control adjusts the gain to compress the input signal when the supply voltage decreases in magnitude and/or the input signal is of such magnitude to cause the supply voltage to decrease.
Abstract:
An apparatus and method for converting digital input signals sampled at different rates to analog signals includes a digital to analog converter for each digital input signal. Each digital to analog converter receives a digital input signal and a clock signal corresponding to the sampling rate of the received digital input signal. The apparatus can also receive a set of sample rate signals indicating the sampling rate for each digital input signal. The sample rate signals are used to route each digital input signal, along with a corresponding clock signal, to a corresponding digital to analog converter (DAC). A clock error signal controls routing of the digital input signals to the DACs as well as operation of the DACs. A clock divider and ratio detector module generates the clock error signal based on intermediate clock error signals that correspond to the sample rates.
Abstract:
Power-up and power-down transient suppression are provided for an audio digital-to-analog converter with a single ended output to prevent annoying pops which accompany switching an audio system on and off. Power-up suppression is achieved by clamping an output signal to ground, driving the audio channel to ground, releasing the clamp and driving the audio channel gradually to its quiescent (zero signal) value. Power-down suppression is provided by using a positive feedback amplifier to accelerate current drain initiated by a constant current source used to bleed off the charge on output capacitor. The audio digital-to-analog converter sets operational mode based on ratios of a master clock to a channel selection clock. The techniques disclosed apply readily to the outputs received from CDs, CD-ROMs, DAT and other digital recording media.
Abstract:
A gain control at the input monitors an input signal and a supply voltage, which drives an output. The gain control adjusts the gain to compress the input signal when the supply voltage decreases in magnitude and/or the input signal is of such magnitude to cause the supply voltage to decrease.
Abstract:
A thermal sensor at the output of a switching amplifier senses heat dissipation at the output switch. If an overheating condition is sensed, gain of the digital input signal is lowered to reduce output power of the audio output signal.
Abstract:
Power-up and power-down transient suppression are provided for an audio digital-to-analog converter with a single ended output to prevent annoying pops which accompany switching an audio system on and off. Power-up suppression is achieved by driving the output of a pulse-width circuit to a reference level such as around, and driving the pulse-width circuit gradually to its quiescent (zero signal) value. Power-down suppression is provided by using a positive feedback amplifier to accelerate current drain initiated by a constant current source used to bleed off the charge on output capacitor. The techniques disclosed apply readily to the outputs received from CDs, CD-ROMs, DAT and other digital recording media.
Abstract:
Power-up and power-down transient suppression are provided for an audio digital-to-analog converter with a single ended output to prevent annoying pops which accompany switching an audio system on and off. Power-up suppression is achieved by clamping an output signal to ground, driving the audio channel to ground, releasing the clamp and driving the audio channel gradually to its quiescent (zero signal) value. Power-down suppression is provided by using a positive feedback amplifier to accelerate current drain initiated by a constant current source used to bleed off the charge on output capacitor. The audio digital-to-analog converter sets operational mode based on ratios of a master clock to a channel selection clock.