Abstract:
A device receives Internet protocol (IP) addresses and metrics associated with network nodes of a network, and stores the IP addresses and the metrics in a route table. The device receives, from a user equipment, a request to connect to the network, and determines a particular network node, of the network nodes, to which to forward a communication session of the user equipment, based on the request and based on the metrics stored in the route table. The device forwards the communication session of the user equipment to the particular network node, and the particular network node enables the user equipment to connect to the network.
Abstract:
A network device may receive a peer-to-peer (P2P) activity record corresponding to a P2P data flow of P2P activity in a network. The P2P data flow may include content information communicated from a first user equipment device (UE) to a second UE via the network, and the P2P activity record may include information identifying the P2P data flow. The network device may insert the information identifying the P2P data flow into a P2P activity map and compare the P2P activity map to a P2P pattern of interest. The network device may also determine a P2P activity of interest probability based on the comparison of the P2P activity map to the P2P pattern of interest, which may describe the likelihood that P2P activity of interest is occurring in the network. The network device may also generate a system response based on the P2P activity of interest probability.
Abstract:
A server device may identify that a user device is connected to a first radio access network (“RAN”), via a first technology. The server device may identify that the user device is capable of accessing a second RAN, via a second technology, where the second RAN is different from the first RAN, and where the second technology is different from the first technology. The server device may also receive an indication that the first RAN is congested. The server device may further determine, based on the indication that first RAN is congested, and further based on identifying that the user device is capable of accessing the second RAN via the second technology, that the user device should be handed over to the second RAN. Additionally, the server device may instruct the user device to connect to the second RAN via the second technology.
Abstract:
An exemplary system and method for determining handovers for a mobile device are disclosed. An exemplary system may generally include a handover server in communication with a communication network configured to support initiated communications from a mobile device. The handover server is configured to detect an initiated communication between the mobile device and a first communication link, determine a value for each of a plurality of factors associated with each of a plurality of available communication links, and assign a desired communication link to the mobile device from the plurality of available communication using a generally simultaneous assessment of the plurality of factors.
Abstract:
A mobile device may determine applications that are executed by the mobile device. The mobile device may further determine handoff parameters, relating to performance of a handoff operation in a cellular network. The handoff parameters may be determined based on the applications being executed by the mobile device. A handoff operation may be performed based on the determined handoff parameters.
Abstract:
A system determines presence updates associated with presence user agents (PUAs), where the presence updates indicate changes in a presence status associated with each of the PUAs. The system further determines an application type associated with each of the PUAs and routes the presence updates to respective presence network agents (PNAs) based on the determined application type.
Abstract:
A network device may receive a peer-to-peer (P2P) activity record corresponding to a P2P data flow of P2P activity in a network. The P2P data flow may include content information communicated from a first user equipment device (UE) to a second UE via the network, and the P2P activity record may include information identifying the P2P data flow. The network device may insert the information identifying the P2P data flow into a P2P activity map and compare the P2P activity map to a P2P pattern of interest. The network device may also determine a P2P activity of interest probability based on the comparison of the P2P activity map to the P2P pattern of interest, which may describe the likelihood that P2P activity of interest is occurring in the network. The network device may also generate a system response based on the P2P activity of interest probability.
Abstract:
A system may include a network traffic policing system configured to monitor resource intensive users and applications of a wireless communication network. The network traffic policing system may include a processing device configured to determine policy actions; and a plurality of policy nodes in communication with the processing device and configured to: gather statistics regarding key variables of the wireless communication network, the statistics including at least one non-data usage variable, forward updated information relating to the key variables to the processing device, and enforce at least one policy action determined by the processing device.
Abstract:
Systems, modules, methods and computer readable mediums for adaptive removal of delay jitter and low end-to-end delay are provided. The method may include the following operations at a delay buffer: calculating a holding time for a plurality of packets input into a network; buffering each of the plurality of packets for the duration of the holding time; and arranging the buffered packets in a sequence indicative of an order in which the buffered packets were input into the network. The holding time may be based on a difference between a current maximum delay of the plurality of packets in a current time window and a delay of a first packet of the plurality of packets in the current time window. The method may also include playing back the buffered packets at a selected playback time. Playing back the buffered packets may be performed at a reception mechanism.
Abstract:
Techniques for providing a method and system for multi-layer network analysis and design are disclosed. In one particular exemplary embodiment, the techniques may be realized as a method, comprising determining, using a computer model of a network, a minimum probability of failure path between a pair of network nodes at a first network layer for one or more pairs of network nodes, calculating, using a processor and stored network data, a value for the minimum probability of failure for the identified minimum probability of failure path between the pair of network nodes at the first network layer for the one or more pairs of network nodes. The method may include identifying a maximum of the determined minimum probability of failure values for the one or more pairs of network nodes for the first network layer. The method may include probability of failure calculations for one or more secondary network layers.