摘要:
A rotor structure for a motor comprising a rotor having an end surface; a shaft extending from the end surface; an encoder member attached to the end surface of the rotor; and a coupler coupled to the shaft adjacent to the encoder member for coupling a further member to the shaft, in which the coupler surrounds the shaft and has a lip associated therewith, the lip extending from the coupler towards the encoder member so as to define a void between the coupler and the encoder member. The void defined by the rotor structure may act to contain matters such as swarf that is ejected from the rotor when the encoder member is fixed to the rotor. The rotor may be used in a motor of an electric power assisted steering (EPAS) system.
摘要:
A drive system for a three phase brushless AC motor is arranged to optimize the transistor switching pattern to improve power output whilst allowing current measurement in all of the phases using a single sensor. This is achieved by defining voltage demand vectors x where more than two states are required to meet a minimum state time requirement determined by the single sensor method, and calculating three or more state vectors which produce the demanded vector x whilst still allowing single current sensing. Various methods of optimising the PWM pattern so as to give maximum output whilst using single current sensing are also disclosed.
摘要:
A drive system for a motor having a rotor and a phase winding (a, b, c) comprises; a drive circuit including switch means associated with the winding a, b, c for varying the current passing through the winding; rotor position sensing means arranged to sense the position of the rotor; control means arranged to provide drive signals to control the switch means; a power input for connection to a power supply at a nominal voltage; and boost means in electric communication with the power input and power output, and controllable to boost the nominal voltage to a higher voltage for application to the winding.
摘要:
A drive system for a motor having a rotor and a phase winding (a, b, c) comprises; a drive circuit including switch means associated with the winding a, b, c for varying the current passing through the winding; rotor position sensing means arranged to sense the position of the rotor; control means arranged to provide drive signals to control the switch means; a power input for connection to a power supply at a nominal voltage; and boost means in electric communication with the power input and power output, and controllable to boost the nominal voltage to a higher voltage for application to the winding.
摘要:
A drive system for a three phase brushless motor uses an algorithm for position sensing which measures the inductance in the motor phases and determines the position from the measured inductances. In order to reduce acoustic noise, the inductances are measured during test periods Tsd, which are conducting states added to the PWM pattern in each PWM period. The test periods have net voltage of zero and therefore do not affect the output of the motor, but are sufficiently long to allow inductance measuring as well as the use of a single current sensor for current sensing.
摘要翻译:用于三相无刷电动机的驱动系统使用用于位置感测的算法,其测量电动机相位中的电感并且从测量的电感确定位置。 为了降低声学噪声,在每个PWM周期中加到PWM模式的导通状态的测试周期T s s测量电感。 测试周期的净电压为零,因此不影响电机的输出,但足够长以允许电感测量以及使用单个电流传感器进行电流检测。
摘要:
A control strategy for a multiple phase brushless motor (1) is disclosed in which the top (2, 3, 4) and the bottom (5, 6, 7) switching devices in two arms of the motor bridge are driven using complementary pulse width modulated waveforms, so that the top device (2, 3, 4) in one of the arms is in the ON state while the bottom device (5, 6, 7) is in the OFF state and vice versa. In an alternative arrangement, the control strategy described hereinbefore is used at high motor speeds while at low motor speeds a conventional modulation scheme is used in which a top switching device (2, 3, 4) in one arm of the bridge is in the ON state and a bottom device (5, 6, 7) in a different arm of the bridge is pulse width modulated. In another aspect, a method of calculating the position of the motor rotor is disclosed.
摘要:
A stator for a multi-phase electric motor comprises a plurality of teeth for each phase. The windings on two teeth from one phase are formed from a single length of conductor. The windings on a first one of the teeth being formed at least in part from two sections of the conductor spaced apart along the length of the conductor, and the windings on a second one of the teeth being formed from an intermediate section of the conductor between the spaced apart sections.
摘要:
A rotor structure for a motor comprising a rotor having an end surface; a shaft extending from the end surface; an encoder member attached to the end surface of the rotor; and a coupler coupled to the shaft adjacent to the encoder member for coupling a further member to the shaft, in which the coupler surrounds the shaft and has a lip associated therewith, the lip extending from the coupler towards the encoder member so as to define a void between the coupler and the encoder member. The void defined by the rotor structure may act to contain matters such as swarf that is ejected from the rotor when the encoder member is fixed to the rotor. The rotor may be used in a motor of an electric power assisted steering (EPAS) system.
摘要:
A drive system for a three phase brushless AC motor that is operative to optimize a transistor switching pattern to improve power output while allowing current measurement in all of the phases using a single sensor. This is achieved by defining a voltage demand vector where more than two states are required to meet a minimum state time requirement determined by the single sensor and calculating three or more state vectors that produce the demand vector while still allowing single current sensing.
摘要:
A control strategy for a multiple phase brushless motor (1) is disclosed in which the top (2, 3, 4) and the bottom (5, 6, 7) switching devices in two arms of the motor bridge are driven using complementary pulse width modulated waveforms, so that the top device (2, 3, 4) in one of the arms is in the ON state whilst the bottom device (5, 6, 7) is in the OFF state and vice versa. In an alternative arrangement, the control strategy described hereinbefore is used at high motor speeds whilst at low motor speeds a conventional modulation scheme is used in which a top switching device (2, 3, 4) in one arm of the bridge is in the ON state and a bottom device (5, 6, 7) in a different arm of the bridge is pulse width modulated. In another aspect, a method of calculating the position of the motor rotor is disclosed.