摘要:
Example embodiments disclose a semiconductor device using resistive memory material layers and a method of driving the semiconductor device. The semiconductor device includes a plurality of memory cells. At least one memory cell includes a uni-polar variable resistor and a bi-polar variable resistor connected in series and configured to switch between low resistance states and high resistance states, respectively, according to an applied voltage.
摘要:
The invention relates to a reforming apparatus made of LTCC and a manufacturing method therefor. The reforming apparatus includes an upper cover made of ceramic material, having a fuel inlet at one side thereof, and an evaporator made of ceramic layers formed integrally with the upper cover, having a flow path to gasify fuel introduced through the upper cover. In the reforming apparatus, a reformer made of ceramic layers is formed at one side of the evaporator, having a catalyst in a flow path thereof to reform fuel gas entering from the evaporator into hydrogen. A CO remover made of ceramic layers is formed integrally with the reformer, having a catalyst to remove CO from reformed gas entering from the reformer. A lower cover is formed integrally at one side of the CO remover, having a reformed gas outlet to emit the reformed gas to the outside.
摘要:
Example embodiments disclose a semiconductor device using resistive memory material layers and a method of driving the semiconductor device. The semiconductor device includes a plurality of memory cells. At least one memory cell includes a uni-polar variable resistor and a bi-polar variable resistor connected in series and configured to switch between low resistance states and high resistance states, respectively, according to an applied voltage.
摘要:
The present invention provides a method of eliminating or covering a defect source in a wafer edge region for semiconductor fabrication. During the etching process of a sacrificial oxide layer for storage node openings, the sacrificial oxide layer has a rumple topology in the wafer edge region due to etching non-uniformity of a photoresist layer formed on the sacrificial oxide layer. Subsequent deposition of a conductive layer and planarization etching, the conductive layer undesirably remains at the wafer edge region as a defect source. Such conductive contaminant particles dislodge, causing many problems in the wafer main region. The present invention removes such a defect source via two methods. One is to directly remove the defect source using a photoresist pattern exposing thereof. The other is to fix the defect source in place in the wafer edge region by protecting thereof by a photoresist pattern during subsequent cleaning processes.