Abstract:
A juice extraction module for a juicer is provided, which includes a container formed with a juice discharge port, a sieve positioned inside of the container, a screw positioned inside of the sieve to extract juice from a material, and a lid coupled to a top end of the container and formed with a input port through which the material is input. The juice extraction module includes a crushing portion formed on a top end of the screw to be narrowed upward, the crushing portion having a crushing blade formed thereon; and a crushing processing portion connected to the input port and formed in a bottom of the lid to be concave for accommodating the crushing portion.
Abstract:
Discussed are a diagnostic cartridge and a control method for the diagnostic cartridge. The cartridge includes a sample port through which a sample is injected, a first chamber moving the sample injected from the sample port, a second chamber moving a substrate solution, a first membrane formed at a distal end of the first chamber to function as a valve for preventing other substances from being injected into the first chamber after the sample is completely moved, and a second membrane formed at a distal end of the second chamber to function as a valve for preventing other substances from being injected into the first chamber after the substrate solution is completely moved.
Abstract:
Disclosed herein is a juice extraction module for juice capable of fundamentally blocking the introduction of dregs which degrade a texture of food when being mixed with the juice and certainly maintaining airtightness. According to one embodiment of the present invention, a dregs blocking part which isolates between a bottom surface of a juice extraction mesh and a bottom of the container maintains airtightness to fundamentally block the introduction of dregs into the juice, thereby improving a texture of food.
Abstract:
A juice extraction module for a juicer is provided, which includes a container formed with a juice discharge port, a sieve positioned inside of the container, a screw positioned inside of the sieve to extract juice from a material, and a lid coupled to a top end of the container and formed with a input port through which the material is input. The juice extraction module includes a crushing portion formed on a top end of the screw to be narrowed upward, the crushing portion having a crushing blade formed thereon; and a crushing processing portion connected to the input port and formed in a bottom of the lid to be concave for accommodating the crushing portion.
Abstract:
A juice extraction module for a juicer is provided, which includes a container formed with a juice discharge port; a sieve positioned inside of the container; a screw positioned inside of the sieve to extract juice from a material; a lid coupled to a top end of the container and formed with an input portion through which the material is input; and a safety cover rotatably installed to a main input opening of a top end of the input portion to be movable between a first position and a second position. The safety cover includes a first cover portion erected to open the main input opening in the first position and closing the main input opening in the second position; and a second cover portion formed integrally with the first cover portion, the second cover portion moving the safety cover to the second position when the second cover portion is pushed by a downward applied force from the first position, whereby the first cover portion blocks the main input opening.
Abstract:
A wireless universal serial bus (WUSB) host is configured to execute WUSB communication with at least one WUSB device. The WUSB host includes a transmitter, a receiver, an analyzer, an adaptive channel time allocation (CTA) setting unit, and a controller. The transmitter is configured to broadcast an initial control packet to the at least one WUSB device, where the control packet includes CTA information generated for the at least one WUSB device. The receiver is configured to receive a data packet from the at least one WUSB device in a packet receiving period indicated by the CTA information included in the control packet. The analyzer is configured to analyze at least one data packet received by the receiver and to determine whether the data packet has been normally received. The adaptive CTA setting unit is configured to adaptively determine, for each of the at least one WUSB device, an optimal packet receiving period in which the analyzer has determined that the data packet has been normally received, and to set the CTA information generated for the at least one WUSB device based on the optimal packet receiving period. The controller configured to generate a subsequent control packet including the CTA information set by the adaptive CTA setting unit.
Abstract:
A wireless universal serial bus (WUSB) host is configured to execute WUSB communication with at least one WUSB device. The WUSB host includes a transmitter, a receiver, an analyzer, an adaptive channel time allocation (CTA) setting unit, and a controller. The transmitter is configured to broadcast an initial control packet to the at least one WUSB device, where the control packet includes CTA information generated for the at least one WUSB device. The receiver is configured to receive a data packet from the at least one WUSB device in a packet receiving period indicated by the CTA information included in the control packet. The analyzer is configured to analyze at least one data packet received by the receiver and to determine whether the data packet has been normally received. The adaptive CTA setting unit is configured to adaptively determine, for each of the at least one WUSB device, an optimal packet receiving period in which the analyzer has determined that the data packet has been normally received, and to set the CTA information generated for the at least one WUSB device based on the optimal packet receiving period. The controller configured to generate a subsequent control packet including the CTA information set by the adaptive CTA setting unit
Abstract:
In a communicating system including a base node, at least one adjacent node, and a start node transmitting data requested by the base node via the adjacent node or to the base node, data requested to the start node is transmitted by measuring a power required for data transmission between the nodes forming the communication system, selecting a path one by one depending on a minimum power consumption required for the data transmission from the base node to the start node using the measured power, and transmitting the requested data using the selected path.
Abstract:
A method, medium, and system estimating a location of a node, whose location is unknown, in a communication system including both nodes having known locations and nodes having unknown locations. A first packet is transmitted and received between nodes having known locations, via a node having an unknown location to be estimated. A second packet, which contains a distance function coefficient acquired using first information and second information included in the received first packet, is transferred to the node having the unknown location to be estimated. The unknown location is then estimated using the received distance function coefficient.
Abstract:
A communication apparatus, wherein the communication apparatus selects a superframe from W consecutive superframes, and starts each of the W consecutive superframes without transmitting a beacon in a first time period of each of the W consecutive superframes when a superframe to be started is different from the selected superframe.