Abstract:
A three-in-one AC servo drive includes a main console, a control module, a power module and a plurality of servo motors. A single drive can be connected to a plurality of motors. The power module and control module for the motors can be integrated to a single modular unit. Therefore, the redundant portion such as communication interface, display unit and I/O unit can be eliminated. The capacitor of the bus of the IGBT module can also be reduced, whereby the occupied space and cost can be reduced with less assembling time.
Abstract:
A wire-saving optical encoder having servomotor identification information is applied to a wire-saving transmission design to provide a circuit and a method for processing servomotor identification information and encoded feedback control signals. With a microprocessor, a multiplexer and the servomotor identification information stored in the microprocessor, an output device and a driver for the feedback signals of the encoder constitute a wire-saving signal transmitting circuit. The microprocessor and multiplexer switch a signal transmission mode to transmit the servomotor identification information and phase change signal produced by the servomotor control parameters stored in a firmware by a serial output mode, and the same transmitting wire is used to transmit a rotor operating signal after the transmitting mode is switched, so as to save wires and lower costs for transmitting feedback signals and correctly identifying and effectively controlling a servomotor.
Abstract:
An AC servo system with distributed movement control is used for multiple axes control in distributed manner includes at least one drive containing a programmable movement controller to perform a customized procedure to control I/O signal of local axis or other axis. The drive can download/perform movement program through communication network, edit axis parameter and monitor the axis status. The drive can set to be master/slave axis according to practical need. The master axis drive performs multiple axes simultaneous control and sends path command to each slave axis drive. The master axis drive calculates complementary command coordinate according to the path command and the path command received by the slave axis drive, whereby the movement trace of the master/slave axis drive can satisfy the path command requirement.
Abstract:
A servo motor system and an operating method of the servo motor system are disclosed. The servo motor system includes a servo motor and a servo driver. The servo motor is electrically connected to the servo driver. The servo motor includes a motor unit and an encoder. The encoder is mechanically connected to the motor unit. The encoder includes a CPU and a memory unit. The memory unit is electrically connected to the CPU. Data parameters are saved in the memory unit. The servo driver uses data parameters of the motor unit saved in the memory unit for controlling the motor unit. The servo motor system and the operating method provide a mechanism to drive and offer compensation to an upgraded motor.
Abstract:
An optical encoder includes a controller electrically connected to an optical sensor to discriminate displacement information of a glass disc. The controller comprises a pair of analog amplifiers for amplifying quadrature periodical output signals of the optical sensor, a pair of A/D converters electrically connected to the analog amplifiers for digitalizing the output of the analog amplifiers, a pair of hysteresis comparators electrically connected to the optical sensor for performing hysteresis comparison for the output of the optical sensor, an up/down counter electrically connected to the pair of hysteresis comparators for up/down counting the output of the hysteresis comparators and a firmware unit electrically connected to the pair of A/D converters and the up/down counter for performing interpolation for the quadrature periodical output signals and counting for the hysteresis compared signals. Therefore, optical encoded result of higher resolution can be achieved.