摘要:
A control device comprises a plurality of command application units, a plurality of platform units, and a shared memory. The command application units are each provided with a command mediation method designation unit that outputs, to the platform unit, identification information pertaining to a platform unit to be subject to cooperative control and a mediation method classification. The platform units are each provided with: an inter-platform communication unit that transmits a command value, the identification information, and the mediation method classification between the platform units via the shared memory; and a command mediation unit that acquires the command value, the identification information, and the mediation method classification from all platform units to be subject to cooperative control, mediates the command values on the basis of the identification information and the mediation method classification, and outputs the mediated command values to the shared memory.
摘要:
A numerical controller which can freely and easily specify, as a control point, various positions on a machine configuration and which can easily set coordinate systems in places on the machine configuration. A numerical controller expresses the machine configuration of a control target in graph form where constituent elements are nodes and holds the machine configuration. The numerical controller includes: a control point coordinate system specification portion that specifies, with the identifier, one or more groups of the control point and the coordinate system; a command value determination portion that uses the specified control point and the coordinate system to determine for which control point and on which coordinate system one or more command values commanded in a program correspond to a coordinate value; and a movement command portion that commands a move of the control point such that the coordinate value of the control point is the command value.
摘要:
A control system includes a control apparatus, identification information storage units disposed in a plurality of servo amplifiers and configured to store identification information pieces for identifying each of the plurality of servo amplifiers, communication units configured to perform communication between the control apparatus and the plurality of servo amplifiers, and an automatic setting unit configured to automatically set axis configuration parameters for assigning correspondence relations between a plurality of control axes and axes of the plurality of servo amplifiers based on the identification information and a type of a servo amplifier corresponding to each of the plurality of control axes recognized by software of the control apparatus.
摘要:
The present invention applies to a mobile robot which can have a human appearance and sophisticated functions enabling it to execute missions. To enable communications internal to the robot to be optimized and allow for a versatility that is both physical (possible substitution of parts of the robot) and software (replacement of programs to adapt it to new missions), an architecture with three computer levels is provided. The highest level comprises the intelligence of the robot which generates commands which are transmitted by an intermediate computer to low-level cards which control the sensors and actuators. Communication between the intermediate computer and the low-level cards is managed by at least one specific secure communication protocol.
摘要:
A load control system has a plurality of drivers provided correspondingly to a plurality of load driving elements in order to control driving of the respective load driving elements for driving loads. Each of the plurality of drivers includes a control unit that controls the load driving element directly associated with a subject driver. The respective drivers are electrically connected to one another so that a mutual control communication state, in which the control unit of the subject driver can transmit to the control units of all or a portion of target drivers of other drivers excluding the subject driver a command signal for controlling the driving of a load driving element directly associated with the all or the portion of target drivers, is created in the load control system.
摘要:
A load control system has a plurality of drivers provided correspondingly to a plurality of load driving elements in order to control driving of the respective load driving elements for driving loads. Each of the plurality of drivers includes a control unit that controls the load driving element directly associated with a subject driver. The respective drivers are electrically connected to one another so that a mutual control communication state, in which the control unit of the subject driver can transmit to the control units of all or a portion of target drivers of other drivers excluding the subject driver a command signal for controlling the driving of a load driving element directly associated with the all or the portion of target drivers, is created in the load control system.
摘要:
A control device (1) of a gear processing machine has a bus (51) that communicates by directly connecting between a tool axis controller (22) and a workpiece axis controller (12), and, in this control device, the position of a tool axis (40) that is detected by a tool axis position detection sensor (25) is supplied to a workpiece axis controller via a bus, an upper controller (10) supplies a predetermined synchronization ratio and a superimposition command for applying a twisting operation to a workpiece axis controller, and the workpiece axis controller adds a value that is generated by multiplying the position of the tool axis that is supplied via the bus, by the synchronization ratio, and the superimposition command, and generates a motion command for a workpiece axis (30).
摘要:
In the multi-axis driver control method for transmitting a command from an external device to the drive-axis basis controller of the multi-axis driver to set operation and/or parameters of the drive-axis basis controller, the external device is connected to the multi-axis driver on a one-to-one basis, and the external interface is connected to the drive-axis basis controller via a multi-dropped connecting portion. The drive-axis basis controller determines whether the command is self-addressed or not and, if the command is self-addressed, the drive-axis basis controller executes the command and transmits response data corresponding to the command and a transmission permission flag to the multi-dropped connecting portion. The multi-dropped connecting portion opens a transmission port in response to the transmission permission flag and transmits the response data to the external device, and after transmission is finished, the multi-dropped connecting portion closes the transmission port.
摘要:
A regulator module serves for the regulation of an actuator, in particular a pneumatic drive, and has a regulator communication interface for for output of the regulation target value and receiving an input actual value. The regulator module comprises concatenating contacts for in line arrangement on a fluid power and in particular pneumatic valve cluster with several valve modules, arranged in a row direction adjacent to each other for the fluid control of fluid power actuators and that the regulator module has an internal bus interface for connection with an internal communication bus of the valve cluster and that the regulator module is able to be connected by way of the internal communication bus with a valve cluster communication means for external communication of the valve cluster.
摘要:
Provided is a multi-axis driver control method that enables communications with drive-axis basis controllers of a multi-axis driver with use of a single general-purpose external interface.In the multi-axis driver control method for transmitting a command from an external device to the drive-axis basis controller of the multi-axis driver to set operation and/or parameters of the drive-axis basis controller, the external device is connected to the multi-axis driver on a one-to-one basis, and the external interface is connected to the drive-axis basis controller via a multi-dropped connecting portion. The drive-axis basis controller determines whether the command is self-addressed or not and, if the command is self-addressed, the drive-axis basis controller executes the command and transmits response data corresponding to the command and a transmission permission flag to the multi-dropped connecting portion. The multi-dropped connecting portion opens a transmission port in response to the transmission permission flag and transmits the response data to the external device, and after transmission is finished, the multi-dropped connecting portion closes the transmission port.