摘要:
Described herein are organic acid reduced food ingredients and methods of making organic acid reduced food ingredients having a less sour taste and better organoleptic properties at low pH than conventional food ingredients with higher total organic acid content. Reduced sourness of the food ingredients of the present invention may be achieved by subjecting the food ingredients to organic acid/organic acid salt reduction methods.
摘要:
This invention relates to processes of preparing structured polymer matrix using two or more simultaneous multiple acervation mechanisms. In addition, the methods described herein provide flexible processes for forming structured polymer matrices from nearly any combination of polymers, preferably, although not limited to, food polymers. The simultaneous application of two or more acervation mechanisms unexpectedly gives novel matrices having improved texture and/or process efficiency that are superior to the polymer matrices produced by acervation mechanisms conducted individually or sequentially.
摘要:
Heat-stable flavor components, which can be used in cheese flavoring systems to prepare food products, including cheeses, having desired flavor profiles. The flavoring components are obtained by addition of flavor-generating whey source as part of a fermentation process in which the whey source provides a source of flavor, and a lipid source is added which traps and stabilizes, and thus preserves, flavor compounds in the fermented mixture during a subsequent heat treatment used for culture inactivation. Methods of making and using these flavoring components and flavoring systems in food products, such as cheese products, also are provided.
摘要:
The present invention is directed to a setting system for use in the making of gelatin desserts comprising gelatin and an anionic hydrocolloid gum wherein the weight ratio of gelatin to anionic hydrocolloid gum is approximately 250-375:1. Through the use of such a setting system, lower gelatin use of up to 10% or more can be realized while achieving an increase in gel strength of up to about 20%.