摘要:
A method for preparing a chalcopyrite-type semiconductor compound which is widely used as a sunlight-absorbing material. More specifically, disclosed is a method for preparing a chalcopyrite-type compound, in which microwaves are used as heat sources in the preparation of the chalcopyrite-type compound, and the chalcopyrite-type compound can be produced in a large amount in a short reaction time using a batch or continuous reactor.
摘要:
Disclosed herein is a method for the preparation of porous materials, which can be used not only for a catalyst, an adsorbent, a catalytic support, ion exchange and gas storage, but also for adsorbent of guest molecules due to nanometer spaces (nanospaces), and of mixed metal oxides which are used as functional ceramic materials. More particularly, disclosed is a method for the preparation of porous materials and mixed metal oxides, in which microwave energy is used as a heating source, and a tube free of connection portions is used as a reactor, and the pressure within the reactor is controlled by measuring the pressure of gas remaining after the separation of solid and liquid, so that the method has increased operational stability and reproducibility, makes the control of residence time easy, and can achieve an increase in productivity. Also, disclosed is an apparatus for the continuous preparation of porous materials and mixed metal oxides, which can perform the preparation method.
摘要:
A method for preparing a chalcopyrite-type semiconductor compound which is widely used as a sunlight-absorbing material. More specifically, disclosed is a method for preparing a chalcopyrite-type compound, in which microwaves are used as heat sources in the preparation of the chalcopyrite-type compound, and the chalcopyrite-type compound can be produced in a large amount in a short reaction time using a batch or continuous reactor.
摘要:
The present invention relates to a catalyst for preparing hydrocarbons of carbon dioxide and more particularly, the Fe—Cu—K/γ—Al2O3 catalyst prepared by impregnation which enables producing hydrocarbons in high yield for more than 2000 hours due to its excellent activity and stability.
摘要翻译:本发明涉及一种用于制备二氧化碳的烃的催化剂,更具体地说,涉及通过浸渍制备的Fe-Cu-K /γ-Al 2 N 3 O 3催化剂,其使得能够 由于其优异的活性和稳定性,以高产率生产烃类超过2000小时。
摘要:
The present invention relates to a novel titania photocatalyst and its manufacturing method. More specifically, the present invention is to provide the quantum-sized novel titania photocatalyst prepared the steps comprising: (a) titanium tetraisopropoxide is encapsulated in zeolite support by adding citric acid to isopropyl alcohol; (b) ethylene glycol is dissolved herein to obtain a uniformly dispersed mixture solution; and (c) it is encapsulated in zeolite cavities. And thus, titania photocatalyst of the present invention has some advantages in that (a) it provides greatly increased surface area and photocatalytic activity due to the smaller granule than the commercial titania powder; (b) it is uniformly dispersed to quantum size zeolite cavities rather than forming large clusters caused by the aggregation of the conventional titania hyperfine powder; and (c) since the quantum efficiency of titania powder in the UV region is maximized thereby, it effectively and promptly removes the hazardous gas like ammonia and sulfide in the atmosphere and organic material in water waste through photo-oxidation reaction.