Abstract:
Disclosed is a method of measuring sample reaction results on a biosensor having a working electrode and other electrodes, including: applying voltage between the working electrode and each of the other electrodes and detecting the amount of current flowing through the working electrode to determine whether or not a sample is injected; applying voltage between the working electrode and one of the other electrodes and re-detecting the amount of current flowing through the working electrode; and acquiring and displaying a concentration value as a sample reaction result corresponding to the amount of detected current.
Abstract:
Disclosed is a method of measuring sample reaction results on a biosensor having a working electrode and other electrodes, including: applying voltage between the working electrode and each of the other electrodes and detecting the amount of current flowing through the working electrode to determine whether or not a sample is injected; applying voltage between the working electrode and one of the other electrodes and re-detecting the amount of current flowing through the working electrode; and acquiring and displaying a concentration value as a sample reaction result corresponding to the amount of detected current.
Abstract:
Disclosed are an apparatus and a method for determining whether or not a biosensor comprising two working electrodes and one reference electrode is well manufactured, and for rapidly and accurately quantifying a specific substance contained in a biological sample. The method comprises the steps of: sequentially supplying the respective working electrodes with power supply voltage; sequentially detecting the amounts of current flowing in the respective working electrodes by virtue of the supplied power supply voltage; re-supplying the two working electrodes with power supply voltage after a predetermined time to redetect the amounts of current flowing in the respective working electrodes; reading concentrations corresponding to the amounts of current detected from a memory, and calculating an average value from the read concentrations; and checking whether or not the concentrations read from memory are within a predetermined critical range to display an error message or the calculated average value.
Abstract:
Disclosed are an apparatus and a method for determining whether or not a biosensor comprising two working electrodes and one reference electrode is well manufactured, and for rapidly and accurately quantifying a specific substance contained in a biological sample. The method comprises the steps of: sequentially supplying the respective working electrodes with power supply voltage; sequentially detecting the amounts of current flowing in the respective working electrodes by virtue of the supplied power supply voltage; re-supplying the two working electrodes with power supply voltage after a predetermined time to redetect the amounts of current flowing in the respective working electrodes; reading concentrations corresponding to the amounts of current detected from a memory, and calculating an average value from the read concentrations; and checking whether or not the concentrations read from memory are within a predetermined critical range to display an error message or the calculated average value.
Abstract:
Disclosed is a method of measuring sample reaction results on a biosensor having a working electrode and other electrodes, including: applying voltage between the working electrode and each of the other electrodes and detecting the amount of current flowing through the working electrode to determine whether or not a sample is injected; applying voltage between the working electrode and one of the other electrodes and re-detecting the amount of current flowing through the working electrode; and acquiring and displaying a concentration value as a sample reaction result corresponding to the amount of detected current.
Abstract:
Disclosed is a method of measuring sample reaction results on a biosensor having a working electrode and other electrodes, including: applying voltage between the working electrode and each of the other electrodes and detecting the amount of current flowing through the working electrode to determine whether or not a sample is injected; applying voltage between the working electrode and one of the other electrodes and re-detecting the amount of current flowing through the working electrode; and acquiring and displaying a concentration value as a sample reaction result corresponding to the amount of detected current.
Abstract:
A biosensor measuring an analyte contained in a sample is disclosed, including: a lower insulating substrate having formed thereon a working electrode and a reference electrode connected to lead terminals through leads, and an enzyme reactant layer formed on the electrodes to react with the analyte contained in the sample; a spacer which is interposed between the lower substrate and an upper substrate, is attached to the lower and upper substrates, and has a sample guide area to guide the sample to reach to the electrodes through the enzyme reactant layer; and an upper insulating substrate which faces the lower substrate through the spacer, where a dummy electrode is formed on the lower substrate, the dummy electrode being separated from the working electrode and the reference electrode, fixing the enzyme reactant layer, and being not connected to the leads.
Abstract:
A biosensor measuring an analyte contained in a sample includes a lower insulating substrate having at least one electrode and an enzyme reactant layer which is formed on the electrode to react with the analyte; a spacer which is attached to the lower substrate and an upper substrate and is provided to form a sample injection area to guide the sample to the electrode through the enzyme reactant layer; and an upper insulating substrate which faces the lower substrate and has an air discharge area to discharge air which is absorbed together with the sample through the sample injection area, where the air discharge area is formed on a layer different from that of the sample injection area.