摘要:
A process for impregnating a medical device made from a water absorbable polymer material, e.g., a hydrogel, with a medical compound having low solubility in aqueous solutions, e.g., an antiseptic or radiopaque compound, is disclosed. The device is first infiltrated with an aqueous solution containing a first water soluble, ionizable compound, and subsequently infiltrated with an aqueous solution containing a second water soluble, ionizable compound. The ionizable compounds are selected such that they react after mutual contact to form the medical compound in-situ within the device.
摘要:
The invention provides a means of boosting the mechanical performance of shaped shaped medical devices comprising polymer hydrogels, such as stents, so that they may be more easily inserted into or removed from the body. In one aspect, the invention provides shaped medical devices having increased mechanical strength and comprising both ionic and covalent crosslinks. In another aspect, the invention provides a shaped medical device having a heterogeneous polymer composition and a variable dissolution or degradation rate along its length. The shaped medical devices according to the present invention retain their shape and stiffness during insertion into the body and can swell and soften inside the body to enhance patient comfort.
摘要:
Shaped medical devices, e.g. stents, having improved mechanical properties and structural integrity are disclosed. The devices comprise shaped polymeric hydrogels which are both ionically and non-ionically crosslinked and which exhibit improved structural integrity after selective removal of the crosslinking ions. Process for making such devices are also disclosed wherein an ionically crosslinkable polymer is both ionically and non-ionically crosslinked to form a shaped medical device. When implanted in the body, selective in-vivo stripping of the crosslinking ions produces a softer, more flexible implant having improved structural integrity.
摘要:
Shaped-medical devices, e.g. stents, having improved mechanical properties and structural integrity are disclosed. The devices comprise shaped polymeric hydrogels which are both ionically and non-ionically crosslinked and which exhibit improved structural integrity after selective removal of the crosslinking ions. Process for making such devices are also disclosed wherein an ionically crosslinkable polymer is both ionically and non-ionically crosslinked to form a shaped medical device. When implanted in the body, selective in-vivo stripping of the crosslinking ions produces a softer, more flexible implant having improved structural integrity.
摘要:
Shaped medical devices, e.g. stents, having improved mechanical properties and structural integrity are disclosed. The devices comprise shaped polymeric hydrogels which are both ionically and non-ionically crosslinked and which exhibit improved structural integrity after selective removal of the crosslinking ions. Process for making such devices are also disclosed wherein an ionically crosslinkable polymer is both ionically and non-ionically crosslinked to form a shaped medical device. When implanted in the body, selective in-vivo stripping of the crosslinking ions produces a softer, more flexible implant having improved structural integrity.