摘要:
A method for encoding data to meet a maximum run length limitation is disclosed. In one embodiment, the method comprises the steps of: (1) providing user data that includes a plurality of bits, wherein said bits have a value of 1 or 0; (2) performing an ECC computation on said plurality of user data bits to add ECC symbols in the form of a plurality of ECC bits; (3) randomizing the plurality of user data bits and said plurality of ECC bits; (4) analyzing said randomized user data bits and ECC bits to determine whether a number of consecutive bits have a common value; and, (5) inverting the value of a bit, when the number of consecutive bits having a common value exceeds the maximum run length limitation. Subsequently, representations of each of the randomized user bits and ECC bits, including any inverted bits, are stored onto a disk surface as magnetic-polarity transitions. Later, the stored magnetic-polarity transitions are read from the disk surface and the randomized user bits and ECC bits, including any inverted bits, are recovered. The randomized user bits and ECC bits are derandomized, and the value of the inverted bit is inverted to its original value using the ECC computations. Accordingly, the original user data is recovered.
摘要:
A disk drive is disclosed comprising a disk comprising a plurality of servo tracks defined by servo sectors. The disk drive further comprises a head comprising a read element offset linearly from a write element by a gap such that when the disk rotates, the read element reaches a servo sector before the write element. During a first operation, a first length of a beginning of the servo sector is read, and during a write operation, a second length of the beginning of the servo sector shorter than the first length is read to enable data to be written while the read element is over at least part of the servo sector.
摘要:
Methods and structures for providing on-the-fly head depopulation in a dynamically mapped storage device. In a dynamically mapped storage device in which all user supplied logical blocks are dynamically mapped by the storage device controller to physical disk blocks, features and aspects hereof allow on-the-fly head depopulation to protect data when a subsection of a storage device, such as a head of surface is failing. When the storage device detects that a head is failing, data may be migrated off the failing subsection into other subsections (e.g., a different head or surface) using mapping features and aspects hereof. Thus, the data on the failing subsection is still available should the subsection or head eventually fail.
摘要:
Methods and structures for performing field flawscan to reduce manufacturing costs of a dynamic mapped storage device. In a dynamic mapped storage device in which all user supplied logical blocks are dynamically mapped by the storage device controller to physical disk blocks, features and aspects hereof permit flawscan testing of a storage device to be completed substantially concurrently with processing write requests for its intended application. A fraction of the storage device may be certified by an initial flawscan performed during manufacturing testing. Statistical sampling sufficient to assure a high probability of achieving specified capacity may be performed to reduce manufacturing time and costs in testing. Final flawscan of the remainder of the storage locations may be performed substantially concurrently with processing of write requests after the device is installed for its intended application. Mapping features and aspects hereof allow the storage device controller to perform flawscan and write operations concurrently.
摘要:
A read/write head for use with bit-patterned media detects write synchronization errors between a write clock and the bit-patterned media. In particular, the read/write head writes data to the bit-patterned media using a write clock. The data is then read from the bit-patterned media and used to detect write synchronization errors between the write clock and the location of bit-islands on the bit-patterned media. Based on detected write synchronization errors, the phase associated with the write clock is modified to align the write clock with the location of bit-islands on the bit-patterned media.
摘要:
Methods for writing servo fields on a rotatable data storage disk using reference patterns on the data storage disk include generating a clock signal, reading a reference pattern signal from a surface of the disk, generating a phase error signal in response to a phase offset between the clock signal and the reference pattern signal, subtracting a timing control value from the phase error to provide an adjusted phase error, generating a frequency control signal in response to the adjusted phase error, and adjusting the frequency of the clock signal. The timing control value is generated in response to the phase error signal and the frequency control signal.
摘要:
Methods according to some embodiments include writing servo patterns on a data storage medium including a plurality of timing patterns in response to phase correction values generated using a phase correction value (PCV) kernel having a length that is less than the number of timing patterns on the data storage medium.
摘要:
Methods and structures for dynamic density control to improve reliability of a dynamically mapped storage device. In a dynamically mapped storage device in which all user supplied logical blocks are dynamically mapped by the storage device controller to physical disk blocks, features and aspects hereof provide for dynamically altering the recording density of user data stored on the storage device. So long as the physical capacity utilization of the storage device permits, new data stored on the device may be stored at lower density to improve reliability in reading back the recorded data. Further features and aspects hereof may reduce the recording density only for data deemed to be critical. Radial (track) density, longitudinal (bit) density, or both may be dynamically controlled to reduce recording density. As physical capacity utilization increases, data previously recorded at lower density may be migrated (re-recorded) at normal higher density.
摘要:
Methods and structures for appending metadata with recorded data in a dynamic mapped storage device. In a dynamically mapped storage device in which all user supplied logical blocks are dynamically mapped by the storage device controller to physical disk blocks, features and aspects hereof allow presently unused physical space to be used for storing additional metadata associated with recorded data. As the current capacity ratio of the storage device increases, appending of metadata may cease and previously recorded data including metadata may be re-recorded (migrated) to eliminate the appended metadata. The appended metadata may be used for enhanced diagnosis and analysis of characteristics of the operating storage device and may be used to restore the content of the storage device to an earlier state. The metadata may include, for example, track following position of the read/write head, temperature, head flying height, and time of day.
摘要:
In accordance with various embodiments, a rotatable member is mounted to a spindle hub so that initial servo data previously provided to the rotatable member are eccentrically offset with respect to a rotational center of the spindle hub. Compensation vales are determined to characterize said offset, after which final servo data are provided to the rotatable member in relation to the initial servo data and the determined compensation values. The final servo data are nominally concentric with the rotational center of the spindle hub.