摘要:
A method of manufacturing a micromachined component includes using a first liquid to etch a first layer (140) located underneath a second layer (150), exposing the second layer to a second liquid that is inorganic and miscible in carbon dioxide, and supercritical drying the micromachined component with carbon dioxide.
摘要:
A method for manufacturing a monolithic apparatus including a plurality of materials presenting a plurality of coplanar lands includes the steps of: (a) providing a substrate constructed of a first material and presenting a first land; (b) trenching the substrate to effect a cavity appropriately dimensioned to receive a semiconductor structure in an orientation presenting a second land generally coplanar with the first land; (c) depositing an accommodating layer constructed of a second material on the substrate and within the cavity to establish a workpiece; (d) depositing a composition layer constructed of a third material on the substrate; (e) selectively removing portions of the composition layer and the accommodating layer to establish the semiconductor structure; (f) depositing a cap layer constructed of a fourth material on the workpiece; and (g) removing the cap layer to establish a substantially planar face displaced from the plurality of lands by a predetermined distance.
摘要:
A sensor has a support substrate (200), an electrode (110, 510, 710) movable relative to a surface (201) of the support substrate (200) and comprised of a first material, a structure (160, 460, 560, 760) over a portion of the electrode (110, 510, 710) to limit mobility of the electrode (110, 510, 710) and comprised of a second material different from the first material, and bonding pads (170, 470) outside a perimeter of the electrode (110, 510, 710) and comprised of the second material.
摘要:
MEMS resonators (100, 400, 500) include a source of material that is capable of sublimation (128, 130, 406, 408, 502, 504). Conductive pathways (132, 134, 402, 404, 502, 504) to the material are used to supply current of ohmically heat the material in order to cause the material to sublimate. The material may be located either on or in close proximity to a resonant member (114) of the resonator. By sublimating the material, the mass of the resonant member is either increased or decreased thereby altering the resonant frequency of the resonant member. The resonant member is preferably located in a recess that is capped by a cap (202) forming a vacuum enclosure, and the material capable of sublimation preferably comprises a material that serves to getter any residual gases in the vacuum enclosure.