摘要:
A process is provided for converting feedstock hydrocarbon compounds over a catalyst composition which comprises clay and a zeolite component, at least one of which has been treated with a phosphorus-containing compound, for example, ammonium dihydrogen phosphate or phosphoric acid, and which is spray dried at a low pH, preferably lower than about 3. An embodiment of the present invention comprises an improved catalytic cracking process to produce high octane gasoline and increased lower olefins, especially propylene and butylene.
摘要:
A catalytic cracking process for converting a hydrocarbon fraction, preferably boiling in the range of a heavy gas oil, is disclosed in which the cracking catalyst is a large crystal fully crystalline zeolite Beta having a broad range of silica-to-alumina mole ratios, i.e. 20->1000. The zeolite Beta catalyst is synthesized with a nitrogenous organic chelating agent, such as a tertiary alkanolamine, preferably triethanolamine, in the synthesis mixture along with at least one source of organic directing agent such as tetraethylammonium hydroxide, tetraethylammonium bromide and tetraethylammonium fluoride. The zeolite Beta can be used as a stand alone catalyst or an additive catalyst for hydrocarbon cracking reactions along with another molecular seive type catalyst such as a faujasite catalyst or ZSM-5. The large crystal zeolite Beta can also be treated with a source of phosphorus to enhance the properties of the zeolite.
摘要:
The catalytic cracking of a hydrocarbon oil to provide a product of increased octane number and increased light olefin content is carried out employing a cracking catalyst composition containing both a large port crystalline zeolite component and a ZSM-57 zeolite component.
摘要:
The catalytic cracking of a hydrocarbon oil to provide a product of increased octane number and increased light olefin content is carried out employing a cracking catalyst composition containing both a large pore crystalline zeolite component and a ZSM-57 zeolite component.
摘要:
A catalytic cracking catalyst and process are disclosed using a catalyst containing: a matrix, a large pore molecular sieve, a shape selective paraffin cracking/isomerization zeolite and a shape selective aliphatic aromatization zeolite. An exemplary catalyst comprises dealuminized zeolite Y, optionally containing rare earth elements, HZSM-5, and gallium ZSM-5 in a matrix. The matrix contains and protects the relatively fragile zeolite components and acts as a sodium and metals sink. The large pore molecular sieve cracks large hydrocarbons to lighter paraffins and olefins. The shape selective paraffin cracking/isomerization component cracks/isomerizes the paraffins produced by the large pore molecular seive. The shape selective aliphatic aromatization catalyst converts light paraffins and olefins into aromatics. A single shape selective zeolite, e.g., ZSM-5 with a controlled amount of an aromatization component such as gallium, may promote both paraffin cracking/isomerization and aromatization.
摘要:
There is provided an aluminum-containing aluminosilicate zeolite corresponding to the substantially aluminum free silicate zeolite described in the Hinnenkamp et al U.S. Pat. No. 4,376,757. Also provided are methods for making this aluminosilicate zeolite and methods for the catalytic conversion of organic charges to desired products with this aluminosilicate zeolite.
摘要:
The use of a catalyst containing Mn, a large pore crystalline molecular sieve, and optionally rare earths in catalytic cracking is disclosed. This catalyst gives high gasoline selectivity with low coke yields and is suitable for either gas oil or resid cracking applications.
摘要:
A multistage process for reducing NO.sub.x in flue gas from fluid catalytic cracking catalyst regeneration. Flue gas is preferably removed after each stage. NO.sub.x formed in each regeneration stage is converted to N.sub.2 prior to discharge from a stage by operating at least the downstream ends of each regeneration stage at oxygen-lean conditions. Staged regeneration can be achieved by passing spent catalyst through a transport reactor in plug type flow and sequentially contacting the catalyst with a plurality of oxygen-containing streams.
摘要:
A fluid catalytic cracking method which comprises:(a) cracking a hydrocarbon feed stock in the presence of a mixed catalyst system which comprises particles of a first, amorphous cracking catalyst and/or large crystalline cracking catalyst component which requires frequent regeneration in a catalyst regeneration zone and particles of a second, shape selective crystalline silicate zeolite catalyst component which is less coke deactivated than the first catalyst component and requires less frequent regeneration than the latter, there being a sufficient difference between one or more of the characterizing physical properties of each catalyst component that the rate of circulation of particles of second catalyst component through the regeneration zone is, on the average, less than that of particles of first catalyst component, said cracking providing a product rich in C.sub.2-6 olefins; and,b) catalytically converting C.sub.2 -C.sub.6 olefins obtained from step (a) to a product containing gasoline and distillate.
摘要:
A catalytic cracking process is provided which comprises:(a) cracking a first heavy hydrocarbon feed in a first riser in the presence of a mixed catalyst composition comprising, as a first catalyst component, an amorphous cracking catalyst and/or a large pore crystalline cracking catalyst and, as a second catalyst component, a shape selective medium pore crystalline silicate zeolite, to provide gasoline boiling range material and one or more light hydrocarbons; and,(b) cracking a thermally treated second heavy hydrocarbon feed in a second riser in the presence of said mixed catalyst composition and in admixture with a gasiform material contributing mobile hydrogen species and/or carbon-hydrogen fragments at the reaction conditions employed to provide gasoline boiling range material in increased yield and/or of higher quality.