Abstract:
Manufacturing lines include inspection systems for monitoring the quality of parts produced. Manufacturing lines for making semiconductor devices generally inspect each fabricated part. The information obtained is used to fix manufacturing problems in the semiconductor fab plant. A machine-vision system for inspecting devices includes a flipper mechanism. After being inspected at a first station, a tray-transfer device moves the tray from the first inspection station to a flipper mechanism. The flipper mechanism includes two jaws, a mover, and a rotator. The flipper mechanism turns the devices over and places the devices in a second tray so that another surface of the device can be inspected. A second tray-transfer device moves the second tray from the flipper to a second inspection station. The mover of the flipper mechanism removes the tray from the first inspection surface and places a tray at the second inspection surface.
Abstract:
Improved method and apparatus for machine vision. One embodiment provides automated imaging and analysis, optionally including Scheimpflug's condition on the pattern projector, telecentric imaging and projecting, an IR filter, a mask to constrain observed illumination, and/or a sine-wave projection pattern for more accurate results. Another embodiment provides circuitry for a machine-vision system. Another embodiment provides a machine-vision system, optionally including accommodation of random orientation of parts in trays, irregular location of features being inspected, crossed pattern projectors and detectors for shadow reduction, detection of substrate warpage as well as ball-top coplanarity, two discrete shutters (or flash brightnesses) interleaved (long shutter for dark features, short shutter for bright features). Another embodiment provides parts inspection, optionally including a tray elevator that lifts trays to an inspection surface, moves trays in short tray dimension, provides first tray inspection at a major surface of the elevator, and/or provides a tray flipper.
Abstract:
Improved method and apparatus for machine vision. One embodiment provides automated imaging and analysis, optionally including Scheimpflug's condition on the pattern projector, telecentric imaging and projecting, an IR filter, a mask to constrain observed illumination, and/or a sine-wave projection pattern for more accurate results. Another embodiment provides circuitry for a machine-vision system. Another embodiment provides a machine-vision system, optionally including accommodation of random orientation of parts in trays, irregular location of features being inspected, crossed pattern projectors and detectors for shadow reduction, detection of substrate warpage as well as ball-top coplanarity, two discrete shutters (or flash brightnesses) interleaved (long shutter for dark features, short shutter for bright features). Another embodiment provides parts inspection, optionally including a tray elevator that lifts trays to an inspection surface, moves trays in short tray dimension, provides first tray inspection at a major surface of the elevator, and/or provides a tray flipper.
Abstract:
Improved method and apparatus for machine vision. One embodiment provides automated imaging and analysis, optionally including Scheimpflug's condition on the pattern projector, telecentric imaging and projecting, an IR filter, a mask to constrain observed illumination, and/or a sine-wave projection pattern for more accurate results. Another embodiment provides circuitry for a machine-vision system. Another embodiment provides a machine-vision system, optionally including accommodation of random orientation of parts in trays, irregular location of features being inspected, crossed pattern projectors and detectors for shadow reduction, detection of substrate warpage as well as ball-top coplanarity, two discrete shutters (or flash brightnesses) interleaved (long shutter for dark features, short shutter for bright features). Another embodiment provides parts inspection, optionally including a tray elevator that lifts trays to an inspection surface, moves trays in short tray dimension, provides first tray inspection at a major surface of the elevator, and/or provides a tray flipper.
Abstract:
Manufacturing lines include inspection systems for monitoring the quality of parts produced. Manufacturing lines for making semiconductor devices generally inspect each fabricated part. The information obtained is used to fix manufacturing problems in the semiconductor fab plant. A machine-vision system for inspecting devices includes a flipper mechanism. After being inspected at a first station, a tray-transfer device moves the tray from the first inspection station to a flipper mechanism. The flipper mechanism includes two jaws, a mover, and a rotator. The flipper mechanism turns the devices over and places the devices in a second tray so that another surface of the device can be inspected. A second tray-transfer device moves the second tray from the flipper to a second inspection station. The mover of the flipper mechanism removes the tray from the first inspection surface and places a tray at the second inspection surface.
Abstract:
Manufacturing lines include inspection systems for monitoring the quality of parts produced. Manufacturing lines for making semiconductor devices generally inspect each fabricated part. The information obtained is used to fix manufacturing problems in the semiconductor fab plant. A machine-vision system for inspecting devices includes a light source for propagating light to the device and an image detector that receives light from the device. Also included is a light sensor assembly for receiving a portion of the light from the light source. The light sensor assembly produces an output signal responsive to the intensity of the light received at the light sensor assembly. A controller controls the amount of light received by the image detector to a desired intensity range in response to the output from the light sensor. The image detector may include an array of imaging pixels. The imaging system may also include a memory device which stores correction values for at least one of the pixels in the array of imaging pixels. To minimize or control thermal drift of signals output from an array of imaging pixels, the machine-vision system may also include a cooling element attached to the imaging device. The light source for propagating light to the device may be strobed. The image detector that receives light from the device remains in a fixed position with respect to the strobed light source. A translation element moves the strobed light source and image detector with respect to the device. The strobed light may be alternated between a first and second level.
Abstract:
Manufacturing lines include inspection systems for monitoring the quality of parts produced. Manufacturing lines for making semiconductor devices generally inspect each fabricated part. The information obtained is used to fix manufacturing problems in the semiconductor fab plant. A machine-vision system for inspecting devices includes a flipper mechanism. After being inspected at a first station, a tray-transfer device moves the tray from the first inspection station to a flipper mechanism. The flipper mechanism includes two jaws, a mover, and a rotator. The flipper mechanism turns the devices over and places the devices in a second tray so that another surface of the device can be inspected. A second tray-transfer device moves the second tray from the flipper to a second inspection station. The mover of the flipper mechanism removes the tray from the first inspection surface and places a tray at the second inspection surface.
Abstract:
Improved method and apparatus for machine vision. One embodiment provides automated imaging and analysis, optionally including Scheimpflug's condition on the pattern projector, telecentric imaging and projecting, an IR filter, a mask to constrain observed illumination, and/or a sine-wave projection pattern for more accurate results. Another embodiment provides circuitry for a machine-vision system. Another embodiment provides a machine-vision system, optionally including accommodation of random orientation of parts in trays, irregular location of features being inspected, crossed pattern projectors and detectors for shadow reduction, detection of substrate warpage as well as ball-top coplanarity, two discrete shutters (or flash brightnesses) interleaved (long shutter for dark features, short shutter for bright features). Another embodiment provides parts inspection, optionally including a tray elevator that lifts trays to an inspection surface, moves trays in short tray dimension, provides first tray inspection at a major surface of the elevator, and/or provides a tray flipper.
Abstract:
In the context of a machine-vision system for inspecting a part, a method and apparatus to provide high-speed 3D (three-dimensional) inspection of manufactured parts. Parts are inspected to obtain dimensional and geometric information regarding such characteristics as sag or bow of subportions of the item, the angle of pitch, yaw, and or roll of one portion relative to another, heights of various formations on the part. In some embodiments, an array of height pixels is calculated, and regions of interest (ROIs) are located within the array, and the ROIs are used to determine characteristic geometries of the parts being measured. One measurement system includes a light source, an imager, and a computer. Light source provides projected patterned light on the object useful to obtain 3D geometric information about the object. The imager has a reception optical axis that intersects the object when the machine-vision system is in operation. In some embodiments, imager includes at least three rows of imaging pixels positioned to receive light shone onto the object by the light source. The computer system calculates three-dimensional object-geometry data of the object using signals from the imager, and computes at least a first characteristic plane and a second characteristic plane of the object from the calculated object-geometry data. The method provides a process for obtaining and manipulating image data (e.g., make calculations on ROI data within one or more arrays of height pixels) to determine characteristics of the parts.
Abstract:
Manufacturing lines include inspection systems for monitoring the quality of parts produced. Manufacturing lines for making semiconductor devices generally inspect each fabricated part. The information obtained is used to fix manufacturing problems in the semiconductor fab plant. A machine-vision system for inspecting devices includes a flipper mechanism. After being inspected at a first station, a tray-transfer device moves the tray from the first inspection station to a flipper mechanism. The flipper mechanism includes two jaws, a mover, and a rotator. The flipper mechanism turns the devices over and places the devices in a second tray so that another surface of the device can be inspected. A second tray-transfer device moves the second tray from the flipper to a second inspection station. The mover of the flipper mechanism removes the tray from the first inspection surface and places a tray at the second inspection surface.