摘要:
A thermal spray powder of the present invention contains a rare earth element and a diluent element that is not a rare earth element or oxygen, which is at least one element selected, for example, from zinc, silicon, boron, phosphorus, titanium, calcium, strontium, and magnesium. A sintered body of a single oxide of the diluent element has an erosion rate under specific etching conditions that is no less than 5 times the erosion rate of an yttrium oxide sintered body under the same etching conditions.
摘要:
A thermal spray powder of the present invention contains a rare earth element and a group 2 element, which belongs to group 2 of the periodic table. The thermal spray powder, which contains a rare earth element and a group 2 element, is formed, for example, from a mixture of a rare earth element compound and a group 2 element compound or from a compound or solid solution containing a rare earth element and a group 2 element. The thermal spray powder may further contain a diluent element that is not a rare earth element or a group 2 element and is not oxygen, which is at least one element selected, for example, from titanium, zirconium, hafnium, vanadium, niobium, tantalum, zinc, boron, aluminum, gallium, silicon, molybdenum, tungsten, manganese, germanium, and phosphorus.
摘要:
A thermal spray powder of the present invention contains a rare earth element and a diluent element that is not a rare earth element or oxygen, which is at least one element selected, for example, from zinc, silicon, boron, phosphorus, titanium, calcium, strontium, and magnesium. A sintered body of a single oxide of the diluent element has an erosion rate under specific etching conditions that is no less than 5 times the erosion rate of an yttrium oxide sintered body under the same etching conditions.
摘要:
A thermal spray powder contains granulated and sintered particles composed of an oxide of any of the rare earth elements having an atomic number from 60 to 70. The average particle size of the primary particles constituting the granulated and sintered particles is 2 to 10 μm. The crushing strength of the granulated and sintered particles is 7 to 50 MPa. A plasma resistant member includes a substrate and a thermal spray coating provided on the surface of the substrate. The thermal spray coating is formed by thermal spraying, preferably plasma thermal spraying, the thermal spray powder.
摘要:
A thermal spray coating is made of cermet and provided on the surface of a base. The value that is gained by further dividing the value, which is gained by dividing the coefficient of thermal expansion of the thermal spray coating by the thickness of the thermal spray coating (unit: μm), by the coefficient of thermal expansion of the base is set to a value no less than 0.15×10−2. Accordingly, peeling and cracking of the thermal spray coating can be prevented from being caused by the difference in the coefficient of thermal expansion between the thermal spray coating and the base.
摘要:
Disclosed is a thermal spray powder of granulated and sintered cermet particles. The granulated and sintered cermet particles have an average particle size of 5 to 25 μm. The particles have a compressive strength of 50 MPa or higher. The particles have a straight ratio of 0.25 or higher, the straight ratio being defined as a value resulting from dividing the maximum thickness of a thermal spray coating obtained, when 150 grams of the thermal spray powder is subjected to thermal spot spraying, by the length of the longest of line segments each of which has both ends thereof on a contour of the spray coating. The granulated and sintered cermet particles have an average aspect ratio of preferably 1.25 or lower. The thermal spray powder is preferably used in applications where a thermal spray coating is formed by high-velocity flame spraying or cold spraying.
摘要:
A thermal spray powder contains granulated and sintered yttria particles and fine yttria particles, the average particle diameter of the fine yttria particles being no more than 1 μm. The content of the fine yttria particles in the thermal spray powder is 1,000 to 10,000 ppm by mass. It is preferred that the thermal spray powder be used in applications for forming a thermal spray coating by plasma thermal spraying at atmospheric pressure.
摘要:
A thermal spray powder contains granulated and sintered yttria particles and fine yttria particles, the average particle diameter of the fine yttria particles being no more than 1 μm. The content of the fine yttria particles in the thermal spray powder is 1,000 to 10,000 ppm by mass. It is preferred that the thermal spray powder be used in applications for forming a thermal spray coating by plasma thermal spraying at atmospheric pressure.
摘要:
A thermal spray powder includes granulated and sintered yttria particles obtained by granulating and sintering a raw material powder in air or oxygen. The primary particles constituting the granulated and sintered yttria particles have an average particle size between 0.5 and 1.5 μm inclusive, and 1.11 times or more as large as the raw material powder. Alternatively, the primary particles have an average particle size between 3 and 8 μm inclusive.
摘要:
A thermal spraying powder contains a chromium-iron based alloy powder that includes carbon. The ratio of the mass of carbon in the alloy powder to the total mass of chromium and iron in the alloy powder is 2% or more. 10% particle size D10 of the alloy powder is preferably 10 μm or more, and more preferably 15 μm or more. 50% particle size D50 of the alloy powder is preferably 20 μm or more. The thermal spraying powder is suitable for use in forming a thermal spray coating through high-velocity flame spraying.