Abstract:
A front end structure for a vehicle includes a facia member defining a forward end of an engine compartment of the vehicle and a radiator disposed in the engine compartment rearwardly spaced from the facia member. A duct member is interposed between the facia member and the radiator. The duct member at least partially blocks the radiator and defines a duct passage extending from an underside opening of the vehicle to the radiator. At least one duct opening is defined in the duct member for supplementing air flow to the radiator from the underside opening.
Abstract:
The present invention generally relates to processes for predicting airflow rates. According to some embodiments, some process steps can include developing a three-dimensional computer-aided design model of a test body topology; discretizing the test body topology; discretizing a volume surrounding the test body topology, the volume being bounded by a test chamber; identifying test body components upon which to collect empirical data; obtaining empirical data for identified components; establishing an airflow model; validating the airflow model in comparison to experimental data; obtaining a flow rate from the validated airflow model; and determining whether the mass flow rate is acceptable.
Abstract:
The present invention generally relates to processes for predicting airflow rates. According to some embodiments, some process steps can include developing a three-dimensional computer-aided design model of a test body topology; discretizing the test body topology; discretizing a volume surrounding the test body topology, the volume being bounded by a test chamber; identifying test body components upon which to collect empirical data; obtaining empirical data for identified components; establishing an airflow model; validating the airflow model in comparison to experimental data; obtaining a flow rate from the validated airflow model; and determining whether the mass flow rate is acceptable.
Abstract:
A front end structure for a vehicle includes a fascia member defining a forward end of a engine compartment and a radiator disposed in the engine compartment rearwardly spaced from the fascia member. The front end structure further includes a duct member receiving airflow from an opening in the fascia member and directing the airflow to a location adjacent the radiator for restricting airflow around the radiator.
Abstract:
A vehicle engine compartment airflow directing member for use with an airflow introducing and directing system includes a base portion and a bottom breather airflow directing portion. The base portion is configured to be secured to support rods provided in the vehicle engine compartment and to enclose a space disposed immediately rearward of the vehicle bumper beam. The bottom breather airflow directing portion extends from the base portion and narrows a bottom breather airflow path within the vehicle engine compartment while also preventing bottom breather airflow from recirculating to a position underneath the vehicle bumper beam.
Abstract:
A front end structure for a vehicle includes a facia member defining a forward end of an engine compartment of the vehicle and a radiator disposed in the engine compartment rearwardly spaced from the facia member. A duct member is interposed between the facia member and the radiator. The duct member at least partially blocks the radiator and defines a duct passage extending from an underside opening of the vehicle to the radiator. At least one duct opening is defined in the duct member for supplementing air flow to the radiator from the underside opening.
Abstract:
A vehicle transmission fluid cooler system includes a transmission fluid cooler and an airflow ducting assembly engaged therewith. The airflow ducting assembly is provided to increase the amount of airflow directed toward the transmission fluid cooler so as to improve the cooling performance thereof, and includes a dam member, a duct member, and air guides. The duct member forms a passage communicating an airflow inlet opening with an airflow outlet opening. The dam member operates to scoop and direct airflow into the airflow inlet opening, and the air guides cooperate with the dam member to increase the amount of airflow scooped by the dam member which is directed into the airflow inlet opening. The airflow outlet opening is positioned to direct the airflow which has passed through the duct member to the transmission fluid cooler.
Abstract:
A distance measuring device is capable of measuring a distance to a piston with a cylinder both discretely and continuously. The distance measuring device includes a coupling probe located axially symmetrically with respect to a piston rod within the cylinder. The coupling probe transmits a continuous wave electromagnetic signal into the cylinder and detects its reflection to measure the distance to the piston while the piston is moving.
Abstract:
An apparatus for the extrusion of profiles includes at least two rectilinear transport path for receiving extruded profiles and provided with clamping devices for clasping the leading and trailing ends respectively of respective extruded profiles. The two transport paths are carried by a drum-like rotatable support whereby each transport path can be moved from an extrusion position whereat an extruded profile can be received on the transport path, and a transfer position whereat the profile can be transferred from the transport path to another processing station, and further to the extrusion position.