摘要:
According to one embodiment, a spin torque oscillator includes a field generation layer, a spin injection layer including a first layer and a second layer, and an interlayer interposed between the field generation layer and the spin injection layer, wherein the first layer is interposed between the second layer and the interlayer and includes a (001)-oriented Heuslar magnetic alloy or a (001)-oriented magnetic material having a body-centered cubic lattice structure.
摘要:
According to one embodiment, a magnetic recording head includes a main pole configured to apply a recording magnetic field perpendicular to a recording medium, a trailing-shield pole opposed to the main pole with a recording gap therebetween, a high-frequency oscillator between the main pole and the trailing-shield pole in the recording gap, configured to produce a high-frequency magnetic field, a magnetic seed layer between the main pole and the high-frequency oscillator and in contact with the main pole, and a highly oriented magnetic layer of a soft magnetic material superposed on the magnetic seed layer between the main pole and the high-frequency oscillator and in contact with the high-frequency oscillator.
摘要:
According to one embodiment, a magnetic head includes a main pole configured to apply a recording magnetic field to a recording layer of a recording medium, a return pole opposed to the main pole with a write gap therebetween, and a high-frequency oscillator between respective facing surfaces of the main pole and the return pole and configured to produce a high-frequency magnetic field. At least one of the main and return poles faces the high-frequency oscillator and includes a laminated structure portion includes a magnetic layer and a nonmagnetic layer laminated to one another.
摘要:
A magnetic recorder includes: a magnetic recording medium; a reproducing head; a magnetic recording head including: a main magnetic pole; a first magnetic layer containing a TM alloy; a second magnetic layer containing a TM alloy or an RE-TM alloy; a third magnetic layer containing an RE-TM alloy; a first intermediate layer provided between the first magnetic layer and the second magnetic layer; and a second intermediate layer provided between the second magnetic layer and the third magnetic layer; and a signal processing portion which performs signal writing into the magnetic recording medium by using the magnetic recording head and reading from the magnetic recording medium by using the reproducing head.
摘要:
According to one embodiment, a perpendicular magnetic recording head includes a main pole which generates a recording magnetic field, a return pole which forms a closed magnetic circuit for the recording magnetic field, and a side shield magnetically spaced from the main pole in a cross-track direction in which a point on a trailing edge of the side shield which is closest to the main pole is positioned on a leading side of a trailing edge of the main pole.
摘要:
A spin valve structure for a spintronic device is disclosed and includes a composite seed layer made of at least Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni)x multilayer. The (Co/Ni)x multilayer is deposited by a low power and high Ar pressure process to avoid damaging Co/Ni interfaces and thereby preserving PMA. As a result, only a thin seed layer is required. PMA is maintained even after annealing at 220° C. for 10 hours. Examples of GMR and TMR spin valves are described and may be incorporated in spin transfer oscillators and spin transfer MRAMs. The free layer is preferably made of a FeCo alloy including at least one of Al, Ge, Si, Ga, B, C, Se, Sn, or a Heusler alloy, or a half Heusler alloy to provide high spin polarization and a low magnetic damping coefficient.
摘要:
According to one embodiment, a magnetic head includes a main pole configured to apply a perpendicular recording magnetic field to a recording layer of a recording medium, a return pole opposed to the trailing side of the main pole with a write gap therebetween and configured to reflux magnetic flux from the main pole to form a magnetic circuit in conjunction with the main pole, a coil configured to excite magnetic flux in the magnetic circuit includes the main pole and the return pole, a plurality of high-frequency oscillatory elements individually interposed between the main pole and the return pole, includes a plurality of magnetic films different in magnetic resonance frequency, and configured to individually apply high-frequency magnetic fields to the recording medium, and an electrical circuit configured to energize the high-frequency oscillatory elements.
摘要:
According to one embodiment, an apparatus for controlling a head includes a transmitting module and a controller. The transmitting module is configured to transmit a write signal to a magnetic head having a spin torque oscillator at the time of recording data. The controller is configured to supply a drive signal that has a level higher than the ordinary level for a prescribed effective time, to the spin-torque oscillator in response to an input write gate that instructs the recording of data. During a period other than prescribed effective time, the controller supplies a drive signal having the ordinary level to the spin-torque oscillator.
摘要:
A magnetic recording head includes a magnetic pole, a spin torque oscillator, a first shield and a second shield. The magnetic pole has an air-bearing surface. The spin torque oscillator is provided so that a first side of the spin torque oscillator faces the magnetic pole in a first direction parallel to the air-bearing surface. The first shield includes a granular magnetic material, and is provided so that two portions of the first shield sandwich the spin torque oscillator in a second direction which is parallel to the air-bearing surface and perpendicular to the first direction. The second shield is provided on a second side of the spin torque oscillator opposite to the first side.
摘要:
A spin torque oscillator includes an amorphous soft magnetic layer, a nonmagnetic layer and a hard magnetic layer. The nonmagnetic layer with a close-packed crystal structure is provided on the amorphous soft magnetic layer. The hard magnetic layer with a close-packed crystal structure and perpendicular magnetic anisotropy is provided on the nonmagnetic layer.