Abstract:
One exemplary embodiment includes a method comprising providing a tire having a component constructed and arranged to cause at least one portion of the tire to have a first stiffness or resistance to force exerted thereon under a first condition and a second stiffness or resistance to force exerted thereon under a second condition and selectively causing the first or second condition to occur.
Abstract:
A fluid includes a liquid medium having iron particles mixed therein. An organic phosphonate based coating is established on the iron particles. The organic phosphonate based coating does not substantially include phosphonic acid groups at an outer surface thereof, and increases oxidation resistance of the iron particles. A method of making such a liquid medium is also disclosed herein.
Abstract:
A magnetorheological fluid composition comprising a low aspect ratio magnetizable particle comprising a unimodal particle distribution and an aspect ratio less than 1.5, a high aspect ratio magnetizable particle comprising an aspect ratio greater than 1.5, and a carrier fluid.
Abstract:
A magnetorheological fluid composition comprising a carrier fluid; and a plurality of high aspect ratio magnetizable particles, wherein the aspect ratio of the high aspect ratio magnetizable particles is greater than 1.5. Optionally, the high aspect ratio magnetizable particles can have interlocking structures comprising male component and a female component. Still further, a magnetorheological fluid composition can comprise low aspect ratio magnetizable particles having the interlocking structures, wherein the aspect ratio of the low aspect ratio magnetizable particles is 1 to 1.5.
Abstract:
One embodiment of the invention includes an MR fluid of improved durability. The MR fluid is particularly useful in devices that subject the fluid to substantial centrifugal forces, such as large fan clutches. A particular embodiment includes a magnetorheological fluid including 10 to 14 wt % of a hydrocarbon-based liquid, 86 to 90 wt % of bimodal magnetizable particles, and 0.05 to 0.5 wt % fumed silica.
Abstract:
A magnetorheological composition includes a mixture of a carrier medium and a particle component disposed in the carrier medium. The particle component includes a magnetic material and a nonmagnetic material. The nonmagnetic material is present in the particle component in an amount of from about 5 to about 95 parts by volume based on 100 parts by volume of the particle component. The particle component is present in the magnetorheological composition in an amount of from about 20 to about 80 parts by volume based on 100 parts by volume of the magnetorheological composition. The magnetorheological composition has an on-state yield stress at magnetic saturation of from about 0.1 to about 100 kPa.
Abstract:
One embodiment includes a magnetic particle-containing adhesive an adhesive including a polymer resin having a softening temperature; and magnetic particles dispersed within the polymer resin.
Abstract:
One embodiment includes a magnetorheological fluid having an on-state yield stress when a magnetic field is applied thereto and comprising a carrier fluid and magnetizable particles suspended in the carrier fluid, and wherein the suspension of the magnetizable particles in the carrier fluid remains essentially homogenous indefinitely in the absence of the magnetic field, and wherein the on-state yield stress of the magnetorheological fluid is greater than or equal to that of poly(alpha)olefin fluid containing the same concentration of magnetizable particles, and wherein the off-state viscosity of the magnetorheological fluid is between about 0.4 and about 12 Pascal-seconds at 40° C.
Abstract:
In one exemplary embodiment, a high melting temperature fastening material may be prepared containing magnetic particles that is used to fasten two or more parts substrates together to form an integrated part.
Abstract:
A vehicle hood or a panel covering an object includes an inner surface and an outer surface. The inner surface faces the object and is offset from the object by a basin depth. The outer surface is substantially opposite the inner surface. A local energy absorber is operatively attached to the inner surface or is disposed between the inner surface and the object. The local energy absorber has a singly-connected structure, which includes a first wall portion and a second wall portion. The first wall portion is operatively attached to the inner surface. The singly-connected structure also includes a curved connector portion joining the first wall portion and the second wall portion.